Стабилизатор напряжения на тиристорах – Симисторный и тиристорный стабилизатор напряжения. Что это такое. Какие стабилизаторы напряжения бывают и в чем их разница

Содержание

Тиристорные и симисторные стабилизаторы напряжения

Главная › Решения › Статьи › Тиристорные и симисторные стабилизаторы напряжения

Принципиальная разница между тиристорами и симисторами заключается в том, что тиристоры пропускают ток только в одну сторону, а симистор в обе. Поэтому для коммутации переменного напряжением требуется либо два тиристора (включенные встречно-параллельно) либо один симистор. Их применение в стабилизаторах в качестве силовых переключающих ключей даёт в основном только одни преимущества в сравнении с релейными или электромеханическими устройствами.

Однако тиристорные и симисторные стабилизаторы напряжения имеют один небольшой недостаток — это ступенчатая стабилизация. Правда, этот недостаток больше относится к принципу работы самого стабилизатора, нежели именно к тиристорам или симисторам. Например, при точности стабилизации 5% шаг напряжения на выходе составляет всего 11 вольт, что лишь немного заметно только на лампочках накаливания. При точности 3% и выше шаг напряжения уже совсем незначителен и составляет всего 6 вольт и менее.

Тиристорный стабилизатор напряжения

Характеризуется отличным быстродействием и высоким КПД, выдерживает большие токи и имеет достаточный запас по кратковременным перегрузкам. Наработка на отказ собственно самих тиристоров значительно превышает срок службы всего стабилизатора напряжения в целом.

Благодаря микропроцессорному управления и отработанным алгоритмам, тиристорный стабилизатор напряжения совершенно не искажает выходное напряжение, т.к. все переключения происходят только при прохождении синусоиды через «ноль». Он отличается низким уровнем собственного энергопотребления вследствие того, что нет никаких дополнительных внутренних потребителей в виде обмоток реле или серводвигателя.

Поэтому тиристорные стабилизаторы напряжения являются самым совершенным классом устройств стабилизации практически без каких либо недостатков и повсеместно применяются и в быту и на производстве. Дополнительным плюсом является их устойчивая работоспособность при низких температурах (-25…-40°С), что позволяет устанавливать их в неотапливаемых помещениях.

Симисторный стабилизатор напряжения

Симистор — это одна из разновидностей тиристора, и с точки зрения обычного пользователя симисторный стабилизатор напряжения полностью аналогичен тиристорному. Однако главным недостатком симистора является его низкая устойчивость к выбросам напряжения, например, при работе с индуктивной нагрузкой, и поэтому приходится предпринимать ряд дополнительных мер для обеспечения надёжности их работы.

Вследствие этого недостатка симисторные стабилизаторы напряжения ограничены в практическом применении, так как тиристорные более надёжны в работе и компактны в габаритах, например, один симистор занимает площадь 4-6 тиристоров. Справедливости ради надо отметить, что для управления симистором требуется менее сложная электронная схема, чем для тиристора, но это преимущество блекнет в сравнении с основным недостатком.

Заключение

Ознакомьтесь, пожалуйста, подробнее с лучшими отечественными тиристорными стабилизаторами напряжения:Рейтинг статьи:
5
2750

Бесперебойное Электроснабжение (www.td-m.ru)
07.01.2016

Встречно-параллельное включение тиристоров

Симистор

Тиристорный стабилизатор напряжения
Симисторный стабилизатор напряжения

РЕШЕНИЯ

Адрес: 105264, г. Москва, Верхняя Первомайская ул., дом 49, корп.2
График: Пн-Пт 9:00-20:00
Телефон: +7 495 232-93-22
Эл.почта: info@td-m.ru
© 1999—2018 Бесперебойное Электроснабжение (ООО «ТД-М»)
Представленная на сайте информация не является публичной офертой.
Все материалы сайта, включая дизайн, тексты, схемы, фотографии,
охраняются законодательством об интеллектуальной собственности.
Мы в социальных сетях —
Конфиденциальность и ограничение
информационной ответственности

www.td-m.ru

Тирристорные стабилизаторы: схема и устройство конструкции

Многие потребители постоянно используют стабилизаторы напряжения для защиты электросети. Перепады напряжения могут значительно повлиять на работу бытовых приборов. Если вы желаете избежать подобных проблем, тогда следует использовать тирристорные стабилизаторы.

Эти устройства позволяют значительно нормализовать скачки напряжения. Теперь они не повлияют на работоспособность вашей бытовой техники. Они способны обеспечить значительную нормализацию электроэнергии и позволяют защитить приборы. Если вам интересно, тогда читайте про релейные стабилизаторы напряжения.

Тирристорные стабилизаторы и их строение

Теперь мы решили рассмотреть устройство тирристорного стабилизатора. Этот прибор имеет простой принцип работы, и если вы откроете крышку, тогда сможете увидеть следующие компоненты:

  1. Автоматических трансформаторов.
  2. Схемы, которые обеспечивают нормальную работу.
  3. Тирристорные ключи.
  4. Светодиодные лампы.

Это основные компоненты, из которых состоит тирристорный стабилизатор.

Принцип работы

Главным элементом этого устройства считается автоматический трансформатор. Именно это устройство будет отвечать за нормализацию электроэнергии. Теперь вам следует рассмотреть его строение. После поступления ток проходит через первичную обмотку. Затем он поступает через вторичную обмотку и проходит к бытовым приборам. Обмотка состоит из огромного количества витков. Обычно на второй обмотке витков будет больше, чем в первичной обмотке.

Количество витков может быть разным, и поэтому после прохождения обмоток ток будет поступать на тирристорные ключи. Они позволяют снизить напряжение до определенного уровня. Во время роста или уменьшения напряжения тирристорные стабилизаторы будут подключать или отключать обмотки.

Если во время работы вы увидите, что лампа будет мерцать, это не означает, что устройство сломалось. Процесс мерцания ламп будет происходить во время подключения обмоток.

Работа тиристоров

Для стабилизации напряжения эти устройства защиты используют тиристорные ключи. Их работа будет иметь определенные особенности. Их включение или отключение может произвести к искажению синусоидальной формы тока. Также тиристор необходим, чтобы контролировать процесс нормализации напряжения. Тиристоры бояться перегрузок и поэтому часто могут перегорать или выходить из строя. Еще одной особенностью считается то, что эти устройства могут значительно перегреваться во время работы. Их необходимо регулярно проверять и контролировать процесс работы. При необходимости вы можете выбрать настенный стабилизатор напряжения.

Типы тирристорных стабилизаторов

Тирристорные стабилизаторы могут быть однокаскадными или двухкаскадными. Однокаскадное устройство способно контролировать работы в один этап. Двухкаскадные соответственно проводят работы по нормализации в два этапа. После второго этапа ток станет идеальным.

Если вы желаете получить надежное устройство, тогда вам следует выбрать двухкаскадное устройство. Оно способно обеспечить надежную защиту, которая вас порадует.

Преимущества и недостатки

Это устройство может иметь не только преимущества, но и недостатки. К основным преимуществам на сегодняшний день можно отнести:

  1. Отсутствие шума во время нормализации напряжения.
  2. Один тиристор может сработать более 1 млрд. раз.
  3. Имеет небольшие размеры.
  4. Высокая скорость выравнивания напряжения.
  5. Возможность работы при низком уровне напряжения.

Это основные преимущества, которые вы можете получить. Теперь следует изучить недостатки, к которым относят:

  1. Ступенчатая стабилизация напряжения.
  2. Микроконтроллер может подвисать.
  3. Цена устройства считается высокой.

Подключение тирристорного стабилизатора

Монтаж тирристорного стабилизатора можно выполнить самостоятельно. Если вы планируете их применять, тогда сможете получить высокую нормализацию напряжения. Подключать их необходимо сразу после счетчика или распределительного щитка. При необходимости использовать их можно и для одного бытового прибора.

Если вы планируете подключить тирристорный стабилизатор самостоятельно, тогда помните, что он имеет высокую мощность и подключение необходимо проводить через клеммы. Многие модели этого устройства в комплекте имеют кабели и розетки.

Читайте также: виды однофазных стабилизаторов.

vse-elektrichestvo.ru

тиристорный, релейный или сервоприводный, их основные характеристики и особенности

Автор: Александр Старченко

Любая электрическая сеть состоит из нескольких фаз и нуля. Число фаз может варьироваться от одной до трёх. В жилых домах обычно используется однофазная электрическая сеть. Трёхфазное электропитание используется в основном на промышленных объектах.

В тех случаях, когда в домашних условиях нужно получить качественное по всем параметрам напряжение, можно применить однофазный стабилизатор напряжения. Однофазный стабилизатор предназначен для нормализации напряжения в условиях изменения его в некоторых пределах. Однофазная сеть предполагает большой выбор моделей стабилизаторов различных конструкций.

Содержание:

  1. Особенности однофазного стабилизатора
  2. Типы стабилизаторов
  3. Характеристики стабилизаторов и критерии выбора
  4. Мощный однофазный стабилизатор

Особенности однофазного стабилизатора

Поскольку однофазная сеть предполагает наличие только двух проводных линий (фаза и ноль), устройство, предназначенное для её нормализации, не отличается сложностью конструкции. Схема контроля определяет величину поступающего напряжения и его отклонение от номинального значения. Затем, в зависимости от конструкции прибора, осуществляется изменение этого напряжения в положительную или отрицательную сторону. В результате на выходе устройства появляется величина, обеспечивающая нормальную работу бытовых устройств и электронной аппаратуры.

Однофазные стабилизаторы могут использоваться на следующих объектах:

  • Жилые квартиры;
  • Загородные дома;
  • Офисные и административные помещения;
  • Производственные предприятия.

Эти устройства выпускаются на различные мощности, что  определяет их сферу применения. Стабилизаторы мощностью до 1000Вт используются для питания бытовой техники, которая представляет собой активную нагрузку. Для обеспечения работы электротехнических устройств с большими пусковыми токами применяются однофазные стабилизаторы, имеющие мощность в пределах 1500-10 000 Вт. Более мощные приборы, до 100 кВт, применяются в условиях промышленных предприятий. Однофазный стабилизатор напряжения на 5 кВт способен обеспечить всю электротехнику загородного дома или, включая погружной насос артезианской скважины и систему полива растений. Также они широко используются в качестве стабилизатора напряжения для дачи.

Типы стабилизаторов

В зависимости от принципа действия, стабилизаторы осуществляют нормализацию напряжения разными способами.

В бытовых условиях применяются следующие типы однофазных стабилизаторов:

  • Сервоприводные;
  • Релейные;
  • Тиристорные.

Сервоприводный

Стабилизатор напряжения с сервоприводом представляет собой обычный автотрансформатор с механической регулировкой напряжения. По обмотке трансформатора перемещается скользящий контакт, закреплённый на роторе серводвигателя. Величину угла поворота ротора задаёт схема контроля напряжения. При низком напряжении трансформатор работает как повышающий, а при высоком напряжении как понижающий. В результате на выходных клеммах устройства получается напряжение точно соответствующее номинальному – 220В.

Устройство стоит недорого и обеспечивает высокую точность установки. Основным недостатком электромеханического стабилизатора является его низкая скорость отработки скачков напряжения и шум от работы серводвигателя. Из-за того, что щётки загрязняются, срабатываются и обгорают, такой стабилизатор требует регулярного технического обслуживания.

Релейный

Релейный стабилизатор так же имеет в своей конструкции автотрансформатор. Но вместо плавной регулировки напряжения, это устройство может обеспечить только дискретное изменение напряжения на выходе. Это обусловлено особенностью конструкции. Изменение напряжения на выходе, осуществляется переключением обмоток трансформатора с помощью реле. Причём, чем большее количество реле используется в схеме устройства, тем большую точность можно получить. Несмотря на это добиться идеальной точности с помощью такого устройства, практически невозможно. К достоинствам прибора релейного типа можно отнести хорошую скорость реакции на изменения входного напряжения, а недостатком его является малая точность и щелчки реле во время работы.

Тиристорный

Принцип работы полупроводниковых стабилизаторов основан на переключении обмоток трансформатора с помощью ключей, которые выполнены не на реле, а на полупроводниковых многослойных приборах – тиристорах или симисторах. Однофазный тиристорный стабилизатор напряжения обладает минимальным временем переключения, способен выдерживать большие токи и сам потребляет мало энергии из-за отсутствия индуктивных нагрузок, таких как обмотки трансформатора или катушки реле. Тиристорные стабилизаторы рекомендуются для стабилизации напряжения при подключении особо чувствительной техники, например, для газовых котлов.

Устройство может работать при отрицательных температурах, поэтому используется в неотапливаемом помещении. Разновидностью электронного стабилизатора является однофазный симисторный стабилизатор напряжения. В отличие от тиристора, этот симметричный полупроводниковый прибор пропускает ток в двух направлениях, поэтому для построения электронного ключа требуется один симистор, заменяющий два тиристора. Достоинства прибора – малые габариты бесшумность и  высокая скорость переключения. Основной недостаток симисторного прибора – это неспособность выдерживать броски напряжения, что ограничивает его применение при работе с реактивной нагрузкой.

Характеристики стабилизаторов и критерии выбора

Основные характеристики стабилизаторов, независимо от их конструкции, полностью совпадают и отличаются только величинами.

Это следующие параметры:

  • Мощность;
  • Скорость выравнивания напряжения;
  • Точность установки;
  • Допустимый разброс напряжения на входе.

Мощность. Требуемая мощность стабилизирующего устройства выбирается в зависимости от  мощности всех потребителей, которые будут подключены к устройству. Самое главное при этом правильно подсчитать эту мощность учитывая активную и реактивную нагрузки. Элементы освещения, электрического отопления, электроплиты, духовки и чайники относятся к активной нагрузке. Если к нормализатору напряжения будут подключены только такие приборы, то для определения нужной мощности стабилизирующего устройства достаточно суммировать мощность всех потребителей и прибавить 20%.

К реактивной нагрузке относится вся техника, работающая с использованием электродвигателей. Это стиральные и посудомоечные машины, холодильники, электроинструмент и насосы систем водоснабжения и отопления. Для определения мощности таких устройств нужно их мощность в ваттах разделить на косинус фи (Cos ϕ). Чтобы не искать этот косинус в технической документации проще всего тепловую мощность разделить на коэффициент 0,7. Кроме того электродвигатели в момент пуска кратковременно потребляют дополнительную мощность, которая может превышать рабочую примерно в три раза.

Например, для определения мощности погружного насоса «Джилекс», который качает воду с глубины 9 метров, даёт 6 м3 воды в час и имеет мощность 400 Вт, потребуется стабилизатор:

(400/0,7*3) = 1714 Вт

Скорость срабатывания. Не менее важным параметром является скорость выравнивания напряжения. Самой низкой скоростью реакции обладает динамический или сервоприводный стабилизатор. От возникновения скачка напряжения до установки номинала может пройти до трёх секунд. Если бросок напряжения слишком большой, то за этот промежуток времени вся электронная техника успеет выйти из строя. Поэтому, несмотря на отличную точность установки, этот прибор нецелесообразно применять в условиях нестабильной сети с частыми и большими скачками напряжения.

Релейный и электронный стабилизаторы реагируют на изменения напряжения, практически одинаково, но релейный стоит дешевле, зато тиристорный абсолютно бесшумен.

Точность. Самая высокая точность установки напряжения на выходе обеспечивается у инверторного и динамического стабилизатора. Электронный и релейный стабилизаторы изменяют величину напряжения ступенями, поэтому точной величины 220 вольт у них получить невозможно. Напряжение на выходе всегда будет чуть больше или чуть меньше номинального,  но эта величина всегда находится в допуске, который регламентируется ГОСТ.

Входное напряжение. Стандарт бытовой сети 220 вольт допускает отклонение от номинала не более чем на 10%. Если напряжение укладывается в эти пределы, то никакой стабилизатор не нужен. На практике, напряжение сети в неблагополучных регионах может изменяться от 140 до 270В и даже больше. Поэтому при выборе стабилизатора следует обязательно учитывать минимальные и максимальные величины напряжения, так как разные модели стабилизаторов имеют свой допустимый разброс по входу, который указан в документации на устройство.

Прочие параметры. Среди дополнительных характеристик можно учесть шум, который присутствует при работе сервоприводного и релейного стабилизаторов и полностью отсутствует в электронных системах, а так же форму напряжения на выходе. Если подключаемая нагрузка требует для своей работы гладкой синусоиды, то именно этот параметр будет являться определяющим при выборе устройства.

Хорошо если однофазный стабилизатор напряжения, оборудован системой байпас (bypass) – обход. Это означает, что когда напряжение сети в норме, то потребитель получает его напрямую, минуя стабилизатор, который подключается в цепь при отклонении величины от номинала.

Стабилизаторы могут устанавливаться на полу или крепиться к стене. Варианты исполнения зависят от габаритов устройства. Если стабилизатор будет эксплуатироваться в неотапливаемом помещении, необходимо уточнить его температурные характеристики.

Мощный однофазный стабилизатор

Однофазный стабилизатор напряжения «Энергия Voltron РСН-8000» относится к релейной системе управления напряжением. Устройство предназначено для работы с мощными нагрузками, к которым может относиться сварочная аппаратура, поскольку стабилизатор выдерживает  ток до 36А.

Предельные величины напряжения на входе варьируются от 98 до 280 вольт, и это очень хороший показатель. Семиступенчатый релейный блок обеспечивает быстрое время переключения – не более 10 мс. Стабилизатор Энергия оборудован системой «Байпас» и имеет защиту от перегрузки, короткого замыкания и выхода напряжения за предельно допустимые величины на входе.

С этим читают:

Понравилась статья? Поделись с друзьями в соц сетях!

nabludaykin.ru

Стабилизатор напряжения — виды устройств, их отличия и достоинства

Стандарты поставляемой электрической энергии в различных странах отличаются. Производители электрических приборов придерживаются стандартов, установленных в своих регионах или экономических содружествах. По этой причине не всегда качество поставляемой электрической энергии совпадает с характеристиками прибора или устройства.

Но бывают случаи, когда низкое качество поставляемой энергии обусловлено устаревшим оборудованием, поломкой или перегрузкой системы передачи электрической энергии в конкретном районе или населенном пункте. В таких случаях велик риск поломки электроприборов.

Для защиты электрических приборов от колебаний напряжения существует устройство, которое пропуская через себя электричество, стабилизирует его и электрические приборы получают ток без скачков, и с определенными пределами колебаний. В свою очередь это продлевает срок службы прибора и оберегает его от поломки при перепадах напряжения. Такое устройство так и называется стабилизатор напряжения.

Виды стабилизаторов

Стабилизаторы отличаются между собой принципом действия своей системы стабилизации. Они бывают электромеханическими и электронными. Электронные делятся на симисторные и тиристорные. Электромеханические делятся на релейные и сервоприводные.

Стабилизаторы механические сервоприводные

Стабилизаторы механические сервоприводные стабилизируют электроэнергию при помощи перемещения токосъемника по сервоприводу. Такая система отличается точностью выходного напряжения и относительно низкой ценой. Но есть и существенные недостатки, присутствие механической системы приводит к ее износу и соответственно к ремонтам. Но самый главный недостаток, это низкая скорость действия прибора на перепад электроэнергии, что при резком перепаде может привести к поломке электроприборов.

Стабилизаторы механические релейные

Стабилизаторы механические релейные работают по принципу переключения обмоток при помощи релейного устройства. Такая система отличается большим запасом пусковых токов и относительно низкой ценой. Но так же имеет ряд недостатков, пригорание и залипание контактов на реле, низкая скорость действия и есть ограничения по мощности. Это означает, что при частых скачках напряжения будет выходить из строя реле. А при резком перепаде трансформатор с такой системой может не успеть среагировать на скачок. Что может приводить к выводу из строя электрических приборов.

Стабилизаторы электронные тиристорные

Стабилизаторы электронные тиристорные работают по принципу преобразования тока через тиристоры. Тиристор – это преобразователь переменного тока однонаправленного действия. Это означает, что в отличие от симистера он проводит ток только в одну сторону. Этим и отличаются стабилизаторы тиристорные от симисторных. То есть при системе симисторного стабилизатора работает один симистор, потому что он работает в обе стороны, а при системе тиристорного стабилизатора работает два тиристора встроенные встречно – параллельно.

Достоинства стабилизаторов на тиристорах

Стабилизаторы такого типа отличаются быстрой реакцией на колебания тока. Выдерживают достаточно большие нагрузки. Имеют низкий уровень потребления электрической энергии, за счет отсутствия в системе всевозможных обмоток и реле. Обладают стабильным показателем в работе при низких температурах, что дает возможность устанавливать их в неотапливаемых помещениях.

Отсутствие механических узлов обеспечивает тихую работу и долгосрочный режим работы без ремонтов. Благодаря своим характеристикам тиристорные стабилизаторы оправданно считаются самыми надежными в эксплуатации, и поэтому пользуются большой популярностью. Спектр применения стабилизаторов с такой системой достаточно широк.

Стабилизаторы электронные симисторные

Стабилизаторы электронные симисторные работают по принципу преобразования тока через симисторы. Симисторы это разновидность тиристоров, по своему принципу являются аналогом кремневых выпрямителей. Но в отличие от однонаправленного тиристора, симистор имеет двухстороннее движение тока. Для обывателя, нет никакой разницы между работой симисторных и тиристорных стабилизаторов.

Отличия симисторного стабилизатора от тиристорного

Если не вникать в вопрос, на первый взгляд так и есть, принцип работы одинаковый. Прибор электронный, на фоне релейных стабилизаторов и сервоприводных выглядит достаточно солидно. Но разница все же присутствует.

Симистор менее устойчив к индуктивным нагрузкам, и приходится дополнять устройство дополнительными защитными мерами. По этой причине у симисторного стабилизатора меньше спектр применения. К тому же габариты превышают тиристорный стабилизатор, за счет размеров самих симисторов. Для сравнения один симистр по размеру сопоставим с пятью тиристорами.

Также электронные стабилизаторы как тиристорный, так и симисторный имеют еще один незначительный недостаток. Система работы стабилизатора имеет ступенчатую стабилизацию. Такой принцип работы не окажет негативного воздействия на электрические приборы и будет незаметен. Возможно, такой нюанс можно будет заметить на лампочке накала, и то не всегда это заметно.

Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Google+

Читайте также:

electrongrad.ru

Симисторный стабилизатор напряжения — принцип работы и устройство

Симисторный стабилизатор напряжения является современным устройством, позволяющим экономить денежные средства на выполнении ремонта дорогостоящей бытовой техники и сокращающим расходы на оплату электрической энергии.

Благодаря отсутствию в конструкции механических реле значительно повышается скорость переключения, а работа устройства характеризуется бесшумностью.

Плюсы и минусы

Стабилизаторы симисторного типа в настоящее время считаются наиболее надежными, что позволяет обеспечивать различные приборы максимальной защитой при любых колебаниях в электрической сети.

Преимущества применения такого стабилизатора представлены:

  • быстрым действием, составляющим 10-20 мс;
  • высокими показателями точности напряжения на выход в пределах 1-2,5 %;
  • широким диапазоном напряжения на выход в пределах 145-275 В;
  • стабильным контролем напряжения на вход и выход с показателями точности 0,5 %;
  • отсутствием внутри прибора движимых механически частей, что делает работу абсолютно бесшумной;
  • продолжительным эксплуатационным сроком на уровне пятнадцати лет и более в условиях беспрерывной работы;
  • отсутствием необходимости обеспечивать сервисное обслуживание.

Неправильно подобранные или некачественные приборы характеризуются дискретными изменениями в процессе обмоточного переключения.

Несмотря на то, что работоспособность техники в этом случае не страдает, неприятным побочным явлением станет частое и заметное мигание эксплуатируемых осветительных приборов.

Стабилизаторы напряжения симисторного типа на сегодняшний день являются самыми современными и оптимальными по виду схемотехнического решения приборами, что обусловлено отличной функциональностью и повышенной надежностью.

Не все знают, когда положена замена счетчиков электроэнергии и за чей счет она производится. Что говорится в законодательстве по этому поводу, расскажем подробно.

Пример расчета блока питания для светодиодной ленты представлен тут.

Что такое световой поток светодиодных ламп и каков этот параметр по сравнению с лампами накаливания, смотрите на этой странице.

Устройство

Конструкционной особенностью стабилизаторов симисторного типа является наличие следующих обязательных комплектующих элементов:

  • автоматического трансформатора, оснащенного парой обмоток, соединяемых напрямую;
  • контроллеров;
  • ключей силового типа.

Контроллерами осуществляется регулирование напряжения на входе посредством сопоставления показаний с номинальными показателями. Такой принцип работы позволяет симисторному стабилизатору среагировать на любые изменения в максимально короткие сроки.

Стабилизатор напряжения тиристорный (симисторный) SUNTEK ТТ 10000 va пониженного входного напряжения

Следует отметить, что уровень точности при выравнивании показателей напряжения напрямую зависит от количества ступеней в регулировке. При минимальном шаге регулирования и значительном количестве ступеней осуществляется более точный процесс стабилизации.

При выборе прибора симисторного типа для стабилизации напряжения следует отдавать предпочтение показателям точности в регулировании менее 1 %, а также моделям с показателями мощности на уровне 40-50 кВт.

Принцип работы

Бытовые симисторные стабилизаторы относятся к категории корректирующих напряжение устройств дискретного действия.

Несмотря на схожесть блоков с другими видами приборов, такие стабилизаторы обладают наилучшими характеристиками.

Принцип работы такого устройства основан на функционировании трансформатора с обмоткой понижающего и повышающего типа, а также микропроцессора.

Ступенчатая работа симисторного стабилизатора представлена следующими этапами:

  • проведение микропроцессорных замеров напряжения внутри сети;
  • обработка микропроцессором всего объёма информации по замерам;
  • формирование решения о необходимости и способе преобразования входящего сигнала;
  • работа трансформаторной обмотки в режиме снижения или повышения показателей.

Симисторные стабилизаторы обладают повышенной чувствительностью к помехам и высокой скоростью реакции, благодаря чему такое устройство успешно используется с целью эффективного выравнивания напряжения для телевизора, Hi-Fi-системы и любой другой дорогостоящей аппаратуры.

Стабилизатор напряжения симисторный — принцип работы

Особенности принципа действия используются в работе не только с низкими показателями сетевого напряжения, но и с повышенными параметрами. Кроме всего прочего, микропроцессор способен на логическое обрабатывание всего объёма получаемой информации, что позволяет минимизировать риск ложного срабатывания.

Симисторные ключевые стабилизаторы отлично подходят практически к любым видам электрических приборов, но наиболее востребованы при работе с дорогой и достаточно капризной в плане напряжения техникой.

Схема стабилизатора 220 В своими руками для дома

Стабилизаторы симисторного типа функционируют аналогично релейным устройствам, а существенное отличие заключается в наличии элемента, отвечающего за переключение трансформаторной обмотки. Реле в этом случае заменено мощными симисторами, которые управляются контроллерами.

Обмоточное управление симисторами является бесконтактным, с отсутствием характерных звуковых сигналов в виде достаточно громких щелчков. Намотка автоматического трансформатора предполагает использование медного провода.

Схема стабилизатора напряжения

Основные комплектующие и инструмент, необходимые для выполнения самостоятельной сборки стабилизатора, представлены:

  • блоком питания;
  • выпрямителем, измеряющим амплитуду напряжения;
  • компаратором;
  • контроллером;
  • усилительными устройствами;
  • световыми диодами;
  • узлом для торможения подключения нагрузки;
  • автоматическим трансформатором;
  • ключами;
  • выключателем-предохранителем;
  • бытовым паяльником и пинцетом.

Стандартная печатная плата размерами 11,5х9,0 см выполняется с применением традиционного стеклотекстолита фольгированного типа, после чего напечатанная на лазерном МФУ схема размещения элементов переносится посредством утюга.

С целью самостоятельной сборки трансформаторов нужно использовать:

  • магнитопровод с сечением 187 ммВІ;
  • кабель ПЭВ-2 в количестве трёх штук для обмотки с количеством витков 8669 и пары обмоток с 522 витками.

На заключительном этапе сборки стабилизатора напряжения на плату устанавливаются мигающие световые диоды.

Самостоятельное выполнение простейшего стабилизатора на 220 В предполагает подключение неэлектронного типа трансформатора с получением на выходе показателей, которые примерно на 11 % превышают стандартное сетевое напряжение.

Таким образом, согласно схеме управление ступенями осуществляется посредством контроллера, а наличие двенадцати ключей регулирует напряжение на выход в большом количестве уровней, что обусловливает высокую точность.

Какой стабилизатор напряжения лучше: релейный или симисторный?

Устройства симисторного типа характеризуются небольшими размерами корпуса, а уровень компактности таких приборов вполне сопоставим с моделями электромеханического и релейного типа. Средняя стоимость симисторного устройства по сравнению с качественными релейными аналогичными приборами выше практически в два-три раза.

Релейный стабилизатор «Ресанта 10000/1-ц»

Несмотря на прекрасную скорость переключения и наличие значительного интервала на входных напряжениях, любой релейный прибор является шумным при эксплуатации и характеризуется низкими показателями точности.

Кроме всего прочего, все релейные стабилизаторы имеют некоторые ограничения по уровню мощности, что обусловливается неспособность контактов коммутировать очень большие токи.

Думаете о том, стоит ли подключить счетчик день ночь? Читайте статью о том, выгодны ли двойные тарифы.

Порядок сборки светодиодного фонаря своими руками описан в этой статье.

Наиболее перспективный вид электронных стабилизаторов представлен в настоящее время современными устройствами, которые функционируют в условиях двойного преобразования сетевого напряжения.

Помимо высокой стоимости, такие приборы не обладают серьёзными недостатками. Именно поэтому при выборе стабилизирующего устройства, если стоимость не имеет решающего значения, целесообразно отдавать предпочтение приборам, полностью собранным с использованием качественных полупроводников.

Видео на тему

proprovoda.ru

Виды стабилизаторов напряжения: релейные, тиристорные, инверторные, электромеханические

13.04.2018


В настоящее время возрастает спрос на стабилизаторы напряжения. Это связано как с активным использованием этих электроприборов во всех сферах жизнедеятельности современного человека, так и с периодически возникающими в сетях проблемами с качеством электроэнергии.


Специализированные магазины и интернет-сайты предлагают большой выбор стабилизаторов отечественного и зарубежного производства, удовлетворяющих практически любые запросы покупателей. Однако следует понимать, что каждый стабилизатор, несмотря на его мощность и стоимость, построен по типовой схеме (топологии), в основе которой – определённый физический принцип стабилизации электрической энергии. Всего таких топологий пять:

  • феррорезонансная;
  • электромеханическая;
  • релейная;
  • полупроводниковая;
  • инверторная.


Практически все виды стабилизаторов напряжения имеют свои преимущества и недостатки, которые в основном обусловлены схемой их построения. Основные параметры устройств каждого типа требуют пристального изучения, так как именно от их значений зависит эффективность работы выбранной модели стабилизатора с различной современной аппаратурой.

Феррорезонансные стабилизаторы

Феррорезонансный стабилизатор


Это первые стабилизаторы, получившие широкое распространение в нашей стране. Начало их массового использования в 50-60-х годах ХХ века связано с появлением ламповых телевизоров и прочей бытовой техники, требующей защиты от сетевых колебаний.


Устройство и принцип работы. Стабилизаторы такого типа отличаются от большинства более современных моделей простотой электронной схемы и отсутствием автотрансформатора. Они понижают или повышают значение напряжения за счёт эффекта феррорезонанса – электромагнитного взаимодействия между двумя дросселями один из которых имеет ненасыщенный сердечник (входной), а второй насыщенный (выходной).


Преимущества. Феррорезонансные стабилизаторы не имеют склонных к поломкам подвижных компонентов, что обеспечивает их надёжность и большой ресурс безотказной работы – некоторые изделия советского производства до сих пор находятся в обиходе и исправно выполняют свою работу. Другие преимущества данной топологии:

  • надёжность и большой ресурс безотказной работы благодаря отсутствию склонных к поломкам подвижных компонентов;
  • высокая точность выходного напряжения за счёт плавного, безразрывного регулирования сетевого сигнала;
  • устойчивость к неблагоприятным условиям окружающей среды;
  • быстродействие.


Недостатки. Отвечающее современному уровню комфорта бытовое использование феррорезонансных стабилизаторов осложняется рядом свойственных им недостатков:

  • шумность работы – гул от встроенных трансформаторов ощущается даже через стену;
  • повышенное тепловыделение;
  • большой вес и крупные габариты;
  • малый диапазон регулируемого входного напряжения – более узкий, чем предельные значения отклонений, встречающихся в отечественных сетях;
  • невысокий КПД вследствие значительных потерь энергии на нагрев;
  • неспособность работать при перегрузках и на холостом ходу;
  • искажения синусоиды.


Стоить отметить, что все указанные недостатки характерны в первую очередь для классических феррорезонансных стабилизаторов первых поколений, в устройствах нового образца они максимально снижены или полностью исключены. Существенный минус современных моделей этой топологии — это их высокая цена, превышающая не только стоимость изделий других типов, но и on-line ИБП соответствующей мощности.


Применение. Несмотря на серьезные сдвиги в разработке более производительных, мощных и надежных преобразователей напряжения, устаревшие феррорезонансные стабилизаторы все еще пользуются спросом при работе с неприхотливой техникой такого же старого поколения. Приборы этой группы — не самый удачный вариант для бытового пользования по причине высокого уровня шумов и громоздкости конструкции, однако вполне могут быть использованы в подсобных помещениях или на загородных усадьбах при плюсовых температурах.

Электромеханические стабилизаторы

Электромеханический стабилизатор


Устройство и принцип работы. Стабилизаторы данного типа появились практически одновременно с феррорезонансными, но имеют отличные от них конструкцию и принцип работы. Главные элементы любого устройства данной топологии – автотрансформатор и подвижный токосъёмный контакт, выполненный в виде ролика, ползунка или щетки. Указанный контакт перемещается по обмотке трансформатора, вследствие чего происходит плавное увеличение или уменьшение коэффициента трансформации и соответствующее изменение (коррекция) поступающего из сети напряжения. Первые электромеханические стабилизаторы имели ручную регулировку – специальный бегунок передвигался по катушке и отключал или подключал витки до количества, необходимого для достижения номинального значения выходного напряжения. В современных устройствах этот процесс автоматизирован: плата управления анализирует входной ток и в случае отклонения его параметров сигнализирует сервоприводу, перекатывающему коммутационный контакт на сегмент тороидальной обмотки автотрансформатора с напряжением, максимально приближенным к номинальному.


Преимущества. Основное достоинство электромеханического принципа стабилизации напряжения – непрерывное регулирование с высокой точностью и без искажения синусоидальной формы сигнала. Также ключевым преимуществом является самая низкая стоимость электромеханических стабилизаторов на отечественном рынке.


Недостатки. Эти устройства имеют и ряд существенных недостатков, делающих их не самым оптимальным решением для защиты многих видов нагрузки, а именно:

  • низкое (за исключением некоторых моделей) быстродействие – скорость реакции на изменение входного сигнала ограничивается временем, требуемым сервоприводу для срабатывания;
  • возникновение кратковременных скачков выходного напряжения при резких перепадах входного, что пагубно влияет на чувствительные электронные компоненты защищаемого оборудования и осложняет применение в сетях с сильными перепадами напряжения;
  • низкое качество фильтрации входных электромагнитных помех и трансляция возмущающего воздействия на выход устройства;
  • низкая надежность из-за механически движущихся деталей, что значительно сокращает срок эксплуатации устройства, из-за чего именно этот тип стабилизаторов чаще всего выходит из строя.


Дополнительные неудобства при эксплуатации электромеханических стабилизаторов в домашних условиях создают:

  • повышенный уровень шума и возможное искрение при работе – следствие движения сервопривода по виткам катушки;
  • громоздкая конструкция, большое количество механических узлов и деталей, и, соответственно, большой вес;
  • необходимость периодического обслуживания подверженного износу узла механического контакта, надёжность которого снижается пропорционально числу срабатываний.


Кроме того, приборы этой группы могут давать сбои при длительном использовании в условиях отрицательной температуры – такому оборудованию комфортнее в отапливаемых помещениях.


Применение. Перечисленные недостатки обуславливают ограниченную сферу применения электромеханических стабилизаторов — они все еще востребованы в сетях без молниеносных скачков напряжения. Разумеется, такие устройства не подходят для бытового использования в домашних условиях, но вполне удачно используются в качестве временной стабилизации напряжения в подсобном хозяйстве, гаражах, небольших мастерских — там, где снижение температуры незначительно. Хотя рассматриваемый тип преобразователей постепенно уходит в прошлое и уступает место более современным конструкциям на релейной и тиристорной основе.

Релейные стабилизаторы

Релейный стабилизатор


Устройство и принцип работы. Приборы этой топологии относятся к электронным устройствам, действие которых построено на базе дискретного (ступенчатого) принципа стабилизации электроэнергии. Он заключается в автоматическом переключении обмоток автотрансформатора и выбора той, напряжение на которой максимально близко к номинальному. Коммутация необходимых для повышения или снижения входного напряжения контуров происходит благодаря срабатыванию силовых электронных реле (отсюда и название данной разновидности стабилизаторов). Управление процессом осуществляет специальный блок. Он контролирует характеристики сетевого напряжения и при их отклонении от установленного значения включает в работу ту или иную ступень стабилизации (количество ступеней соответствует числу установленных реле).


Преимущества. Основное преимущество этих устройств перед электромеханическими аппаратами устаревших конструкций – повышенная скорость срабатывания (не более 10-20 мс). Кроме того, релейные стабилизаторы обладают простейшей структурой, в которой исключены сложные узлы и дорогостоящие компоненты, что упрощает их техническое обслуживание и ремонт. Ремонтные работы, как и сами приборы, отличаются низкой стоимостью. Релейные стабилизаторы не боятся перегрузок, чем и обусловлен их длительный срок эксплуатации. Также этот тип устройств выделяется сравнительно небольшими габаритами и малым весом. Они не требуют дополнительного охлаждения и отлично справляются со своими функциями в условиях отрицательных температур.


Недостатки. Главный недостаток релейных стабилизаторов напряжения – дискретное (неплавное) регулирование. Он обусловлен принципом работы и проявляется в виде мигания электрических ламп при переключении ступеней стабилизации. Cтупенчатая корректировка напряжения также:

  • снижает точность стабилизации (может достигать 10%), при этом рост быстродействия релейных устройств неминуемо повышает погрешность в их работе;
  • способствует трансляции искажений сетевой синусоиды на выход устройства.


Релейная топология сохраняет и ряд минусов присущих электромеханическим изделиям:

  • работа стабилизатора не бесшумна – срабатывание сопровождается звуковым эффектом подобным щелчку;
  • реле подвержены механическому износу, в меньшей степени чем элементы сервопривода, но тенденция к ухудшению качества работы с увеличением срока эксплуатации сохраняется.


Применение. Релейные стабилизаторы подходят для защиты маломощных приборов в сетях, характеризующихся небольшими колебаниями напряжения. Вышеперечисленные недостатки говорят о недостаточном соответствии приборов этой группы требованиям по защите современной электроники, чувствительной к малейшим отклонениям питающего напряжения.

Тиристорные стабилизаторы

Тиристорный стабилизатор


Устройство и принцип работы. Данные устройства можно рассматривать как результат развития и усовершенствования дискретного принципа стабилизации. Их конструкция и принцип работы схожи с аппаратами релейной топологии. Главное различие состоит в том, что переключение обмоток автотрансформатора выполняют не реле, а полупроводниковые силовые ключи – тиристоры, увеличивающие точность стабилизации и делающие работу устройства практически бесшумной.


Преимущества. Исполнительные блоки на базе полупроводниковых элементов не имеют механических деталей и обеспечивают минимальное время реакции на изменение входного напряжения (однако некоторая задержка всё-таки сохраняется). Кроме бесшумной работы, быстродействия и увеличенной (относительно релейных моделей) точности стабилизации тиристорные стабилизаторы обладают следующими преимуществами:

  • долговечность и надежность – полупроводниковые компоненты не подвержены механическому износу и имеют большой рабочий ресурс;
  • широкий диапазон сетевого напряжения – возможна работа с большинством предельных отклонений;
  • отсутствие генерации электромагнитных помех при работе;
  • устойчивость к низким и высоким температурам окружающей среды;
  • скромные габариты и небольшой вес;
  • высокий КПД — отсутствие обмоток, реле и движимых элементов снижает уровень собственного энергопотребления.


Недостатки. Применение тиристорных ключей не способно полностью исключить основной недостаток дискретного принципа работы – ступенчатые скачки напряжения. Они неминуемо возникают при переключении трансформаторных обмоток и снижают точность стабилизации, повышение которой, как и в релейных моделях, негативно влияет на быстродействие устройства. Даже самые современные стабилизаторы на полупроводниковых элементах не гарантируют безразрывное электропитание и сигнал идеальной синусоидальной формы. Определённые проблемы могут возникнуть, например, при работе с профессиональным аудио-видео оборудованием – помехи создаваемые при ступенчатом переключении отрицательно скажутся на качестве картинки и звука. Ещё один минус тиристорных стабилизаторов – чувствительность к перегрузкам, которые могут привести к выходу из строя электронных ключей и дорогостоящему ремонту.

Симисторные стабилизаторы

Симисторный стабилизатор


Поскольку симисторы являются одним из типов тиристоров, то и принцип работы стабилизаторов на их базе существенно не различаются. Разница заключается в том, что в отличие от тиристоров, симисторы способны пропускать ток в обоих направлениях, поэтому нет необходимости в параллельно-встречном подключении двух тиристоров. Также при подключении индуктивной нагрузки симисторы более уязвимы для скачков напряжения, нежели тиристоры, и требуют дополнительной защиты. Хотя этот недостаток компенсируется тем, что в симисторных устройствах применяется более простая электронная схема.


В целом же симисторные стабилизаторы обладают теми же преимуществами, что и тиристорные:

  • низкий уровень шума при работе;
  • быстрое реагирование на сетевые изменения, скорость составляет 10-20 мс;
  • высокий уровень КПД, достигающий 98%, что выделяет их среди конкурентов более старых поколений;
  • устойчивость к перегрузкам — например, тиристорные стабилизаторы способны проработать до 12 часов при перегрузке в 20%;
  • долговечность прибора при работе на износ, но в то же время дорогостоящий ремонт в случае выхода из строя одного из компонентов;
  • способность выдерживать температурные перепады, но уязвимость для повышенных уровней влажности.


Также устройства не лишены некоторых недостатков:

  • низкая точность регулирования, обусловленная ступенчатой стабилизацией;
  • более габаритная конструкция, по сравнению с тиристорными стабилизаторами;
  • высокая стоимость в сравнении с релейными моделями.


Подводя итог по тиристорным и симисторным моделям следует уточнить, что по параметрам они не намного превосходят релейные стабилизаторы, хотя их стоимость выше и в случае возникновения неисправности замена электронных компонентов обойдется дороже. Тем не менее, такие приборы пользуются спросом и в домашних условиях, и на даче, поскольку неприхотливы к окружающей среде и в то же время не создают шума. Однако крайне не рекомендуется подключать высокоточное оборудование к тиристорным/симисторным стабилизаторам.

Инверторные стабилизаторы

Современные инверторные стабилизаторы Штиль серии «Инстаб»


Это наиболее «молодой» вид стабилизаторов – серийное производство начато в конце 2000-х годов. Инновационная конструкция и характеристики, недоступные для моделей других топологий, делают данные устройства прорывом в стабилизации электрической энергии.


Устройство и принцип работы. Принцип действия данных устройств схож с on-line ИБП и построен на базе прогрессивной технологии двойного преобразования энергии. Сначала выпрямитель превращает входное переменное напряжение в постоянное, которое затем накапливается в промежуточных конденсаторах и подаётся на инвертор, осуществляющий обратное преобразование в переменное стабилизированное выходное напряжение. Инверторные стабилизаторы кардинально отличаются от релейных, тиристорных и электромеханических по внутреннему строению. В частности, в них отсутствует автотрансформатор и любые подвижные элементы, в том числе и реле. Соответственно, стабилизаторы двойного преобразования избавлены от недостатков, присущих трансформаторным моделям.


Преимущества. Алгоритм работы этой группы устройств исключает трансляцию любого внешнего возмущающего воздействия на выход, что обеспечивает полную защиту от большинства проблем электроснабжения и гарантирует питание нагрузки напряжением идеальной синусоидальной формы со значением максимально приближенным к номинальному (точность ±2%). Кроме того, инверторная топология устраняет все недостатки характерные другим принципам стабилизации электрической энергии и обеспечивает моделям, реализованным на её базе, уникальное быстродействие – стабилизатор реагирует на изменение входного сигнала мгновенно, без задержек во времени (0 мс)!


Другие важные преимущества инверторных стабилизаторов:

  • максимально широкие границы рабочего сетевого напряжения – от 90 до 310 В, при этом идеальная синусоидальная форма выходного сигнала сохраняется во всем указанном диапазоне;
  • непрерывное бесступенчатое регулирование напряжения – исключает ряд неприятных эффектов, связанных с переключением порогов стабилизации в электронных (релейных и полупроводниковых) моделях;
  • отсутствие автотрансформатора и подвижных механических контактов – повышает ресурс работы и снижает массу изделия;
  • наличие входного и выходного фильтров высоких частот – эффективно подавляют возникающие помехи (присутствуют не во всех моделях, характерны в частности для продукции ГК «Штиль» – ведущего производителя инверторных стабилизаторов).


Возникает закономерный вопрос — есть ли недостатки у инверторных устройств? Единственным и в то же время спорным недостатком является более высокая цена. Но учитывая технические требования современной бытовой техники и одновременно сохраняющуюся тенденцию перепадов сетевого напряжения, инверторные стабилизаторы сегодня являются самым экономически оправданным вариантом для постоянного пользования как в частных домах и загородных коттеджах, так и на промышленных объектах. Они гарантируют устойчивое, корректное функционирование дорогостоящей бытовой техники и чувствительных электронных устройств при любом качестве питающей электросети.


Подробнее по этой теме читайте ниже:


Инверторные стабилизаторы напряжения «Штиль». Модельный ряд.

www.shtyl.ru

Типы стабилизаторов напряжения

 

Стабилизаторы со ступенчатым регулированием

Принцип работы

Основные детали стабилизаторов этого типа — автотрансформатор состоящий из нескольких обмоток и устройство коммутации, которое переключает эти обмотки. 

На входе устройства находится электронная плата, которая анализирует сетевое напряжение и управляет переключателями, которые подают напряжение на выход от соответствующего вывода обмотки автотрансформатора.

Количество обмоток и , соответственно, ступеней может варьироваться от 4 до 9. Чем больше ступеней, тем точнее регулируется напряжение.

Быстродействие ступенчатых СН достигает 5-7 мсек. 

Переключателями могут служить:

  • электромеханические реле
  • тиристоры, симисторы

 Преимущество реле — отсутствие искажения формы напряжения, недостаток — ограниченная долговечность

Преимущества электронных  переключателей — долговечность, недостатки — искажение формы напряжения, чувствительность к помехам в сети.

Недостатки 

Так как СН этого типа регулируют напряжение ступенями, то на его выходе напряжение колеблется в определённых пределах, например, для стабилизатора с напряжение 220 В+/- 8% на выходе получим 203-237 В.

Это хорошо видно на графике:

 

Это основной недостаток ступенчатых ступенчатых преобразователей.

Основные преимущества:

  • небольшой размер
  • невысокая стоимость
  • возможность работы с перегрузкой
  • широкий диапазон входного напряжения 
  • практически бесшумная работа

Все эти достоинства оценили потребители, и сейчас большинство пользуется именно этими ПН.

Схема ступенчатого стабилизатора

Схема релейного стабилизатора:

Схема тиристорного (симисторного) стабилизатора

 

Для увеличения точности регулирования напряжения применяют двухкаскадные схемы — первая грубая регулировка и второй каскад — для увеличения точности.

 Вот как выглядит такой стабилизатор внутри:

Электромеханические стабилизаторы напряжения (сервоприводные)

Принцип работы

Главные детали в данных стабилизаторах — автотрансформатор и электромеханический переключатель, сервопривод.

Сервопривод представляет из себя бегунок, который движется по по виткам трансформатора и снимает с них нужное напряжение.

Недостатки

  • низкая надёжность
  • небольшой срок службы
  • низкая скорость реакции на изменение напряжения
  • шум при переключении

В качестве съёмного бегунка используют угольные щётки, поэтому срок службы и надёжность оставляют желать лучшего.

Во время работы слышен характерны звук искрения в щёточном механизме.

Скорость реакции примерно, 1 с на 10% изменения напряжения от номинала, поэтому при больших и резких скачках, например, работе сварочного аппарата, данный тип СН не сможет корректно стабилизировать напряжение.

Основные неисправности механических СН — залипание сервоприводного механизма и истирание бегунка-щётки.

Преимущества

  • низкая стоимость
  • точность регулирования
  • не вносит искажений на выходе

Сервоприводный двигатель отрабатывает колебания напряжения, с точностью 2-3%.

А стоимость из-за простоты конструкции невысокая, и такие стабилизаторы доступны по цене.

Стоит отметить, что сейчас появились роликовые механические СН, в которых вместо угольной щётки используется подвижный ролик — долговечность и надёжность таких стабилизаторов на порядок выше.

Схема электромеханического стабилизатора

 

Схема бегункового механизма:

Фото сервопривода в электромеханическом СН:

 

Инверторные стабилизаторы.

Ещё их называют стабилизаторы с двойным преобразованием или «онлайн стабилизаторы»

Принцип работы

СН этого типа преобразуют переменное напряжение сети в постоянное, после чего из постоянного формируют переменное со стабильными параметрами частоты, уровня и формы.

Таким образом параметры выходного напряжения не зависят от параметров входного.

Схема инверторного стабилизатора

ВФ — входные фильтры

ККМ — корректор коэффициента мощности

ИНВ — преобразователь постоянного напряжения в переменное

ВИП — вторичный источник питания

МК — микроконтроллер, управляющий работой всей схемы

Преимущества инверторных стабилизаторов

  • широкий диапазон входного напряжения
  • стабильные параметры выходного напряжения
  • бесшумность
  • небольшие габариты и вес
  • фильтрация помех и высокочастотных выбросов из сети
  • высокий КПД
  • защита по превышению тока в нагрузке

Инверторы способны работать от 100 В! При этом имеется снижение отдаваемой мощности (до 50%). Но это всё равно отличный показатель по сравнению с другими типами СН. Верхний предел доходит до 300 В.

При этом форма выходного сигнала — чистая синусоида, со стабильной частотой 50 Гц и напряжением 220 В. Эти параметры не зависят от параметров входного сигнала, а задаются внутренним генератором. Стабильность держится в пределах +/- 05-1%. 

Преобразователи способны работать с небольшой перегрузкой — до 120%. При увеличении мощности нагрузки стабилизатор плавно ограничивает ток, не давая выходить мощности за опасные пределы. Также есть защиты от скачков напряжения и перегрева самого прибора.

Современный уровень развития электроники позволяет разместить довольно мощные стабилизаторы в небольшом корпусе, сравнительно маленького веса.

КПД, благодаря современной элементной базе и наличию встроенного корректора коэффициента мощности переваливает за 90 %.

Очень часто такие преобразователи совмещают с аккумуляторными батареями, получая ИБП — источник бесперебойного питания или UPS. Это позволяет питать потребителей электроэнергии даже при полном отключении электричества.

Недостатки инверторного стабилизатора

Недостатком таких СН является  цена. Но всё равно их используют всё чаще. А стоимость данных приборов будет снижаться по мере развития электроники и элементной базы для неё.

masterxoloda.ru