Суперконденсатор что такое – Суперконденсаторы или Ионисторы вместо аккумулятора. Новая технология Ё-мобиль.

Сравнение суперконденсатора и аккумулятора

Категория: Поддержка по аккумуляторным батареям
Опубликовано 04.04.2016 02:39
Автор:
Abramova Olesya

Суперконденсатор, также известный как ультраконденсатор или двухслойный конденсатор, отличается от обычного конденсатора тем, что имеет очень большую емкость. Конденсатор хранит энергию с помощью статического заряда, в противовес электрохимическим реакциям батареи. Применение дифференциального напряжения на положительную и отрицательную пластины заряжает конденсатор. Это похоже на накопление статического заряда при трении. Прикосновение же к пластине конденсатора высвободит энергию.

Существует три типа конденсаторов, основным среди них является электростатический конденсатор с сухим сепаратором. Эта классическая модель конденсатора имеет очень маленькую емкость и в основном используется в радиоэлектронике. Емкость конденсатора измеряется в фарадах и для электростатического колеблется в диапазоне пикофарад (пФ).

Следующий тип конденсатора — электролитический, он обеспечивает более высокую емкость в сравнении электростатическим и оценивается в микрофарадах (мкФ), что в миллион раз больше пикофарада. Сепаратор в таких конденсаторах влажного типа. Как и в электрических батареях, конденсаторы имеют разные полюса, которые необходимо соблюдать при использовании.

Третий тип – это суперконденсатор, его емкость оценивается в фарадах и в тысячи раз больше емкости электролитического. Суперконденсатор используется для хранения энергии, подвергающейся частым циклам заряда/разряда при высоких значениях силы тока и короткой длительности.

Единица измерения емкости фарад, названа так в честь английского физика Майкла Фарадея (1791-1867). Один фарад хранит один кулон электрического заряда при напряжении один вольт. Один микрофарад в миллион раз меньше фарада, а пикофарад в миллион раз меньше микрофарада.

Инженеры General Electric начали экспериментировать с ранней версией суперконденсатора еще в 1957 году, но коммерческого интереса эти разработки не вызвали. В 1966 году Standart Oil заново случайно обнаружили эффект двухслойного конденсатора во время работы с экспериментальными конструкциями топливных элементов. Двухслойная структура значительно улучшала способность накапливать энергию. Технология снова не была коммерциализирована и лишь 1990-х нашла свое применение.

Развитие суперконденсаторов тесно переплетено с технологиями электрохимических источников тока, именно оттуда были позаимствованы специальные электроды и электролит. В то время как основной электрохимический двухслойный конденсатор (EDLC) зависит от электростатического действия, асимметричный двухслойный электрохимический конденсатор (AEDLC) использует батарееподобные электроды для получения более высокой плотности энергии, но это ограничивает его жизненный цикл и наделяет ограничениями, схожими на ограничения электрохимического источника тока. Многообещающим выглядит использование графена в качестве материала электрода, но исследования в этом направлении пока только ведутся.

Было испробовано много типов электродов, и наиболее распространенной системой электрохимического двухслойного суперконденсатора сегодня является версия на основе углерода с органическим электролитом. Неоспоримым преимуществом такого суперконденсатора является простота изготовления.

Все конденсаторы имеют предел напряжения. В то время как электростатический конденсатор является высоковольтным, суперконденсатор ограничен напряжением в 2,5-2,7 В. Повышение значения напряжения выше этого уровня возможно, но негативно сказывается на продолжительности срока службы. Поэтому для получения более высокого напряжения используют последовательное соединение нескольких суперконденсаторов. В свою очередь, последовательное соединение уменьшает общую емкость и увеличивает внутреннее сопротивление. Такое соединение более чем трех конденсаторов требует дополнительной балансировки для избежания перенапряжения отдельной ячейки. Похожим образом реализована система защиты литий-ионного аккумулятора.

Удельная энергоемкость суперконденсатора колеблется от 1 до 30 Вт*ч/кг, что в 10-50 раз меньше показателя литий-ионного аккумулятора. Еще одним недостатком является кривая разряда. В то время как электрохимические батареи обеспечивают постоянное напряжение в полезном диапазоне мощности, напряжение суперконденсаторов уменьшается линейно, что сокращает спектр доступной мощности. (Смотрите: Базовые знания о разряде электрохимического источника тока).

Возьмите источник тока с номинальным напряжением 6 В и напряжением отсечки 4,5 В. Если этот источник тока – суперконденсатор, то из-за своего линейного характера разряда он достигнет точки отсечки еще в первой четверти цикла, остальные три четверти энергетического резерва будут недоступными для использования. Можно конечно дополнительно использовать преобразователь напряжения — он позволит пользоваться источником питания и с низким значением напряжения, но это добавляет дополнительные расходы и приводит к потерям энергии. Электрическая же батарея имеет график разряда в виде относительно прямой линии, что позволяет использовать от 90 до 95 % накопленной в ней энергии.

На рисунках 1 и 2 показаны характеристики тока и напряжения при заряде и разряде суперконденсатора. При зарядке напряжение увеличивается линейно, а ток проседает, когда конденсатор полностью зарядился, вследствие этого даже отпадает необходимость использования системы детектирования полного заряда. При разрядке напряжение уменьшается также линейно. Для поддержания постоянного уровня потребляемой мощности при падении напряжения, преобразователь напряжения будет потреблять все большую силу тока. Разряд будет достигнут, когда нагрузочные требования больше не могут быть удовлетворены.

Рисунок 1: Зарядные характеристики суперконденсатора. Напряжение линейно растет при постоянном уровне тока заряда. При полном заполнении конденсатора зарядный ток падает.

Рисунок 2: Разрядные характеристики суперконденсатора. При разряде напряжение снижается линейно. Опциональный преобразователь напряжения может поддерживать определенный показатель напряжения, но это увеличивает показатель силы тока разряда.

Время зарядки суперконденсатора составляет от 1 до 10 секунд. Зарядные характеристики аналогичны характеристикам электрохимических батарей, и в значительной степени ограничены допустимой силой тока зарядного устройства. Суперконденсатор невозможно зарядить сверх его емкости, вследствие этого ему не нужна система детектирования полного заряда — ток просто перестает течь в него.

В таблице 3 сравниваются суперконденсатор и стандартный литий-ионный аккумулятор.











ХарактеристикиСуперконденсаторСтандартный литий-ионный аккумулятор
Время зарядки1-10 секунд10-60 минут
Количество циклов1 миллион или 30 тысяч часов500 и выше
Напряжение ячейкиОт 2,3 до 2,75 В3,6 В номинал
Удельная энергоемкость (Вт*ч/кг)5 (стандартно)120-240
Удельная мощность (Вт/кг)до 10 тысяч1000-3000
Стоимость килограмм ватта$ 10000 (стандартно)$ 250-1000 (большие системы)
Время жизни10-15 летот 5 до 10 лет
Допустимый зарядный диапазон температурот -40°С до 65°Сот 0°С до 45°С
Допустимый разрядный диапазон температурот -40°С до 65°Сот -20°С до 60°С

Таблица 3: Сравнение производительности суперконденсатора и литий-ионного аккумулятора.

Суперконденсатор может заряжаться и разряжаться практически неограниченное число раз. В отличии от электрохимической батареи, в которую заложен жизненный цикл определенного размера, суперконденсатор практически нечувствителен к воздействию циклического режима работы. Также слабее на него действуют и возрастные изменения, связанные с деградацией материалов. При нормальных условиях емкость суперконденсатора после 10 лет эксплуатации сохраняется на уровне 80% от номинальной. Но работа с высокими напряжениями может снизить его срок жизни. Также стоит отметить преимущество суперконденсатора по температурным показателях — слабым местом всех электрохимических источников тока.


Аккумуляторы EverExceed

 





OPzSNI-CDOPzV
20 лет / 1500 циклов25 лет / 2000 циклов20 лет / 1500 циклов
для промышленного и частного применения: телекоммуникации, аварийное освещение, солнечные электростанции, системы безопасности, (UPS) источники бесперебойного питания и т.д.

Саморазряд суперконденсатора значительно выше у обычных конденсаторов и немного превышает показатель электрохимической батареи. Причиной такого высокого саморазряда, главным образом, выступают свойства органического электролита. Для сравнения, суперконденсатор теряет половину запасенной энергии за 30-40 дней, а свинцовые и литиевые аккумуляторы саморазряжаются всего на 5% в месяц.

Применение суперконденсаторов

Суперконденсаторы являются идеальным выбором в случаях, где возникает краткосрочная потребность в питании и есть возможность быстрой зарядки. В противовес этому, электрохимические батареи оптимизированы для обеспечения относительно долгосрочного электропитания. Объединение этих двух систем в гибридный источник питания позволяет использовать сильные стороны каждой. Такие гибриды уже существуют, например, в виде союза суперконденсатора и свинцово-кислотной электрохимической системы.

Суперконденсаторы находят свое применение в системах, где необходимо обеспечение питания продолжительностью от нескольких секунд до нескольких минут, и также могут быть быстро заряжены. Подобными качествами располагает и маховик (инерционный аккумулятор), поэтому суперконденсатор может выступать ему альтернативой в определенных процессах, например, транспортной сфере.

Сегодня продолжаются испытания системы суперконденсаторов мощностью 2 мВт и системы маховиков мощностью 2,5 мВт для обеспечения движения Нью-Йоркской железной дороги (Long Island Rail Road — LIRR). Целью этих испытаний является поиск решения проблемы проседания напряжения при разгоне. Обе системы должны обеспечивать бесперебойную подачу электроэнергии определенной мощности в течение 30 секунд, а также заряжаться за такой же период времени. Главными требованиями являются колебание напряжения в диапазоне не более 10 %, низкие эксплуатационные расходы и долговечность не менее 20 лет. (Пока что больший интерес вызывали маховики, так как считается, что они более прочные и экономичные, но испытания еще продолжаются).

Япония также активно исследует и развивает использование суперконденсаторов. Уже существуют 4 мВт системы, установленные в зданиях, предназначение которых заключается в уменьшении нагрузки на электросети в часы пик. Также существуют системы, обеспечивающие кратковременное электропитание в моменты между отключением электричества и запуском резервных генераторов.

Технологии суперконденсаторов также смогли проникнуть в область электротранспорта. Возможность зарядки за счет сил торможения и способность обеспечения высоких показателей силы тока для ускорения делают суперконденсаторы крайне интересными для гибридных и электрических транспортных средств. Широкий диапазон рабочих температур и долговечность дают преимущество над электрохимическими батареями в этой сфере.

Но недостатки суперконденсаторов, такие как низкая удельная энергоемкость и высокая стоимость, побуждают некоторых разработчиков делать выбор в пользу более емкого аккумулятора за ту же стоимость. В таблице 4 приведены преимущества и недостатки суперконденсаторов.



ПреимуществаПрактически неограниченный жизненный цикл; может быть перезаряжен миллионы раз
Высокая удельная мощность и низкое внутреннее сопротивление обеспечивают высокие токи нагрузки
Процесс зарядки занимает секунды; сам прекращает процесс зарядки
Простой процесс и условия зарядки
Безопасный, устойчивый к неправильной эксплуатации
Отличные показатели работы при низких температурах
НедостаткиНизкая удельная энергоемкость
Линейный характер снижения напряжения не позволяет использовать всю накопленную энергию
Высокий саморазряд, выше, чем у электрических батарей
Низкое напряжение ячейки, необходимость последовательного соединения и балансировки систем из нескольких ячеек
Высокая стоимость ватта энергии

Таблица 4: Преимущества и недостатки суперконденсаторов.

Последнее обновление 2016-02-29

best-energy.com.ua

МЭК — поставка электронных компонентов

Что такое суперконденсаторы: история и виды устройств

“Мэк” запустила продажи суперконденсаторов — электрохимических конденсаторов с высокими значениями удельной мощности. В этой статье мы расскажем о том, что такое суперконденсатор, какие виды устройств бывают, и кто их разработал.

Суперконденсаторы — это электрохимические конденсаторы, которые отличаются от обычных долговечностью, более низкими потерями тока и большими значениями удельной мощности. При этом они меньше, чем обычные конденсаторы.

В перспективе суперконденсаторы полностью заменят батареи и станут альтернативными источниками питания в разных областях, например, в такой современной сфере, как строительство электромобилей. Эти приборы уже используют в солнечных батареях и ветроэнергетических установках, так как они аккумулируют избытки энергии и делают работу станций более экономной.

Что такое суперконденсатор?

Суперконденсатор – это тот же аккумулятор но с лучшими свойствами. Он быстрее заряжается и разряжается. Это элемент с двумя электродами, между которыми располагается электролит. Электроды выполнены в виде пластины. Для улучшения электрических параметров суперконденсатора, Иногда пластины покрывают пористым материалом, например, активированным углем, это улучшает показатели суперконденсатора.

Суперконденсатор – это гибрид химической аккумуляторной батареи и обычного конденсатора:

  1. Основное отличие суперконденсатора от обычного конденсатора — это двойной электрический слой. между электродами. В результате внутри него накапливается намного больше энергии.
  2. Суперконденсатор быстрее накапливает и отдает электрический заряд. Благодаря двойному электрическому слою повышается площадь поверхности электродов при тех же габаритах. В устройстве лучше сочетаются электрические характеристики – емкость аккумулятора и скорость конденсатора.

История суперконденсатора

В 1962 году химик американской компании Standard Oil Company Роберт Райтмаер подал заявку на патент, где подробно расписывался механизм сохранения электрической энергии в конденсаторе с «двойным электрическим слоем». В устройстве он уделил большое значение материалу обкладок. У электродов должна быть разная проводимость: один электрод — электронную проводимость, а другой – ионную. В результате, при заряде конденсатора происходило разделение положительных центров и электронов в электронном проводнике, а также разделение анионов и катионов в ионном проводнике.

В 1971 году лицензия досталась японской компании NEC, которая занималась всеми направлениями электронной коммуникации. NEC продолжила развивать технологию суперконденсаторов. Потом суперконденсаторами стали заниматься и другие компании. С 2000-х годов развитие технологии началось во многих странах мира.

Виды суперконденсаторов

Суперконденсаторы делятся на:

  1. Двухслойные конденсаторы (ДСК).
  2. Псевдоконденсаторы.
  3. Гибридные конденсаторы.

В двухслойных суперконденсатор есть два пористых электродов из электропроводящих материалов, разделенных заполненным электролитом сепаратором. Процесс запасания энергии идет за счет разделения заряда на электродах с весьма большой разностью потенциалов между ними. Электрический заряд таких конденсаторов определяется емкостью двойного электрического слоя, то есть отдельного конденсатора на поверхности каждого электрода. Между собой они соединяются последовательно с помощью электролита, который является проводником с ионной проводимостью.

Псевдоконденсаторы уже ближе к перезаряжаемым аккумуляторам. В них имеются два твердых электрода. Принцип действия сочетает два механизма сохранения энергии: фарадеевские процессы, которые схожи с процессами, происходящими в батареях и аккумуляторах, а также электростатическое взаимодействие, свойственное конденсаторам с двойным электрическим слоем. Приставка «псевдо» из-за того, что емкость зависит не только от электростатических процессов, но и быстрых фарадеевских реакций с переносом заряда.

Гибридные конденсаторы – это переходный вариант между конденсатором и аккумулятором. Слово «гибридные» объясняется тем, что электроды в гибридных конденсаторах получаются из разных материалов, а накопление заряда осуществляется по разным механизмам. В большинстве случаев в гибридных конденсаторах катодом является материал с псевдоемкостью. В результате аккумулирование заряда на катоде осуществляется с помощью окислительно-восстановительных реакций, что увеличивает удельную емкость конденсатора, а также расширяет область рабочих напряжений.

В гибридных конденсаторах часто применяют комбинацию электродов из допированных проводящих полимеров и смешанных оксидов.

Еще больше информации о суперконденсаторах, которые продаются в «МЭК», можно узнать в каталоге производителя — компании Green Tech.

Все новости

mek-el.ru

Суперконденсатор

Суперконденсатор или ионистор – это, как правило, элемент с двумя электродами, между которыми находится электролит. Электроды представляют собой пластины из какого-либо материала. Часто для улучшения электрических параметров суперконденсатора, пластины дополнительно покрывают пористым материалом (чаще всего активированным углем). В качестве электролита может выступать органическое или неорганическое вещество.

По сути, суперконденсатор или ионистор – это гибрид обычного конденсатора и химической аккумуляторной батареи.

Основное отличие суперконденсатора от конденсатора в том, что первый имеет между электродами не просто диэлектрик, а двойной электрический слой. Между электродами получается очень маленькое расстояние, а его электрическая емкость (возможность накапливать электрическую энергию) получается намного выше.

От аккумуляторной батареи супер конденсатор отличается скоростью накапливания и отдачи электрического заряда. Благодаря использованию двойного электрического слоя увеличивается площадь поверхности электродов при неизменных общих габаритах.

То есть ионистор вобрал в себя лучшие электрические характеристики обоих элементов – скорость конденсатора и емкость аккумулятора.

История создания

Первый суперконденсатор с двойным электрическим слоем был изобретен в 1957 году. Правообладателем патента на него стала фирма General Electric. Это был элемент с пористыми угольными электродами. И поскольку в то время до конца не был понятен механизм накопления электроэнергии в нем, предположили, что она «запасается» в пористой структуре электродов.

Похожий ионистор, который сохранял энергию в двойном слое в 1966 году, был открыт и запатентован американской фирмой Standard Oil of Ohio, базирующейся в Кливленде. Через 4 года в 1971 году, не найдя применения новому изобретению лицензию на производство предоставили фирме NEC. Именно благодаря ей в этом же году появился сам термин «Супеконденсатор».

Семью годами позже в 1978 году фирма Panasonic выпустила похожее устройство, но под названием «Gold Cap» (Золотой конденсатор).

В 1982 году благодаря разработкам фирмы PRI был создан суперконденсатор с малым внутренним сопротивлением, который можно было использовать в качестве аккумулятора энергии в достаточно мощных электрических цепях. До этого все суперконденсаторы были способны накапливать и отдавать лишь незначительную энергию.

< Предыдущая   Следующая >

scsiexplorer.com.ua

Cамодельный ионистор — суперконденсатор делаем своими руками.

Электрическая емкость земного шара, как известно из курса физики, составляет примерно 700 мкФ. Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом. Но есть и конденсаторы с электроемкостью земного шара, равные по своим размерам песчинке — суперконденсаторты. 

Появились такие приборы сравнительно недавно, лет двадцать назад. Их называют по-разному: ионисторами, иониксами или просто суперконденсаторами.

Не думайте, что они доступны лишь каким-то аэрокосмическим фирмам высокого полета. Сегодня можно купить в магазине ионистор размером с монету и емкостью в одну фараду, что в 1500 раз больше емкости земного шара и близко к емкости самой большой планеты Солнечной системы — Юпитера.

Любой конденсатор запасает энергию. Чтобы понять, сколь велика или мала энергия, запасаемая в ионисторе, важно ее с чем-то сравнить. Вот несколько необычный, зато наглядный способ.

Энергии обычного конденсатора достаточно, чтобы он мог подпрыгнуть примерно на метр-полтора. Крохотный ионистор типа 58-9В, имеющий массу 0,5 г, заряженный напряжением 1 В, мог бы подпрыгнуть на высоту 293 м!

Иногда думают, что ионисторы способны заменить любой аккумулятор. Журналисты живописали мир будущего с бесшумными электромобилями на суперконденсаторах. Но пока до этого далеко. Ионистор массой в один кг способен накопить 3000 Дж энергии, а самый плохой свинцовый аккумулятор — 86 400 Дж — в 28 раз больше. Однако при отдаче большой мощности за короткое время аккумулятор быстро портится, да и разряжается только наполовину. Ионистор же многократно и без всякого вреда для себя отдает любые мощности, лишь бы их могли выдержать соединительные провода. Кроме того, ионистор можно зарядить за считаные секунды, а аккумулятору на это обычно нужны часы.

Это и определяет область применения ионистора. Он хорош в качестве источника питания устройств, кратковременно, но достаточно часто потребляющих большую мощность: электронной аппаратуры, карманных фонарей, автомобильных стартеров, электрических отбойных молотков. Ионистор может иметь и военное применение как источник питания электромагнитных орудий. А в сочетании с небольшой электростанцией ионистор позволяет создавать автомобили с электроприводом колес и расходом топлива 1-2 л на 100 км.

Ионисторы на самую разную емкость и рабочее напряжение есть в продаже, но стоят они дороговато. Так что если есть время и интерес, можно попробовать сделать ионистор самостоятельно. Но прежде чем дать конкретные советы, немного теории.

Из электрохимии известно: при погружении металла в воду на его поверхности образуется так называемый двойной электрический слой, состоящий из разноименных электрических зарядов — ионов и электронов. Между ними действуют силы взаимного притяжения, но заряды не могут сблизиться. Этому мешают силы притяжения молекул воды и металла. По сути своей двойной электрический слой не что иное, как конденсатор. Сосредоточенные на его поверхности заряды выполняют роль обкладок. Расстояние между ними очень мало. А, как известно, емкость конденсатора при уменьшении расстояния между его обкладками возрастает. Поэтому, например, емкость обычной стальной спицы, погруженной в воду, достигает нескольких мФ.

По сути своей ионистор состоит из двух погруженных в электролит электродов с очень большой площадью, на поверхности которых под действием приложенного напряжения образуется двойной электрический слой. Правда, применяя обычные плоские пластины, можно было бы получить емкость всего лишь в несколько десятков мФ. Для получения же свойственных ионисторам больших емкостей в них применяют электроды из пористых материалов, имеющих большую поверхность пор при малых внешних размерах.

 На эту роль были перепробованы в свое время губчатые металлы от титана до платины. Однако несравненно лучше всех оказался… обычный активированный уголь. Это древесный уголь, который после специальной обработки становится пористым. Площадь поверхности пор 1 см3 такого угля достигает тысячи квадратных метров, а емкость двойного электрического слоя на них — десяти фарад!

http://techclan.planeta2.org/photo/samodelnyj_ionistor/12-0-529

Самодельный ионистор На рисунке 1 изображена конструкция ионистора. Он состоит из двух металлических пластин, плотно прижатых к «начинке» из активированного угля. Уголь уложен двумя слоями, между которыми проложен тонкий разделительный слой вещества, не проводящего электроны. Все это пропитано электролитом.

При зарядке ионистора в одной его половине на порах угля образуется двойной электрический слой с электронами на поверхности, в другой — с положительными ионами. После зарядки ионы и электроны начинают перетекать навстречу друг другу. При их встрече образуются нейтральные атомы металла, а накопленный заряд уменьшается и со временем вообще может сойти на нет.

Чтобы этому помешать, между слоями активированного угля и вводится разделительный слой. Он может состоять из различных тонких пластиковых пленок, бумаги и даже ваты.
 В любительских ионисторах электролитом служит 25%-ный раствор поваренной соли либо 27%-ный раствор КОН. (При меньших концентрациях не сформируется слой отрицательных ионов на положительном электроде.)

В качестве электродов применяют медные пластины с заранее припаянными к ним проводами. Их рабочие поверхности следует очистить от окислов. При этом желательно воспользоваться крупнозернистой шкуркой, оставляющей царапины. Эти царапины улучшат сцепление угля с медью. Для хорошего сцепления пластины должны быть обезжирены. Обезжиривание пластин производится в два этапа. Вначале их промывают мылом, а затем натирают зубным порошком и смывают его струей воды. После этого прикасаться к ним пальцами не стоит.

Активированный уголь, купленный в аптеке, растирают в ступке и смешивают с электролитом до получения густой пасты, которой намазывают тщательно обезжиренные пластины.

При первом испытании пластины с прокладкой из бумаги кладут одна на другую, после этого попробуем его зарядить. Но здесь есть тонкость. При напряжении более 1 В начинается выделение газов Н2, О2. Они разрушают угольные электроды и не позволяют работать нашему устройству в режиме конденсатора-ионистора.

Поэтому мы должны заряжать его от источника с напряжением не выше 1 В. (Именно такое напряжение на каждую пару пластин рекомендовано для работы промышленных ионисторов.)

Подробности для любознательных

При напряжении более 1,2 В ионистор превращается в газовый аккумулятор. Это интересный прибор, тоже состоящий из активированного угля и двух электродов. Но конструктивно он выполнен иначе (см. рис. 2). Обычно берут два угольных стержня от старого гальванического элемента и обвязывают вокруг них марлевые мешочки с активированным углем. В качестве электролита употребляется раствор КОН. (Раствор поваренной соли применять не следует, поскольку при ее разложении выделяется хлор.)

Энергоемкость газового аккумулятора достигает 36 000 Дж/кг, или 10 Вт-ч/кг. Это в 10 раз больше, чем у ионистора, но в 2,5 раза меньше, чем у обычного свинцового аккумулятора. Однако газовый аккумулятор — это не просто аккумулятор, а очень своеобразный топливный элемент. При его зарядке на электродах выделяются газы — кислород и водород. Они «оседают» на поверхности активированного угля. При появлении же тока нагрузки происходит их соединение с образованием воды и электрического тока. Процесс этот, правда, без катализатора идет очень медленно. А катализатором, как выяснилось, может быть только платина… Поэтому, в отличие от ионистора, газовый аккумулятор большие токи давать не может.

Тем не менее, московский изобретатель А.Г. Пресняков (http://chemfiles.narod.r u/hit/gas_akk.htm) успешно применил для запуска мотора грузовика газовый аккумулятор. Его солидный вес — почти втрое больше обычного — в этом случае оказался терпим. Зато низкая стоимость и отсутствие таких вредных материалов, как кислота и свинец, казалось крайне привлекательным.

Газовый аккумулятор простейшей конструкции оказался склонен к полному саморазряду за 4-6 часов. Это и положило конец опытам. Кому же нужен автомобиль, который после ночной стоянки нельзя завести?

И все же «большая техника» про газовые аккумуляторы не забыла. Мощные, легкие и надежные, они стоят на некоторых спутниках. Процесс в них идет под давлением около 100 атм, а в качестве поглотителя газов применяется губчатый никель, который при таких условиях работает как катализатор. Все устройство размещено в сверхлегком баллоне из углепластика. Получились аккумуляторы с энергоемкостью почти в 4 раза выше, чем у аккумуляторов свинцовых. Электромобиль мог бы на них пройти около 600 км. Но, к сожалению, пока они очень дороги.

Дополнительные материалы из раздела сделай сам.
http://techclan.planeta2.org/publ/27

http://vkontakte.ru/note9771591_10283476

folegion.livejournal.com

Общая информация


Устройство суперконденсатора


Суперконденсатор (ионистор) — это перспективное устройство для накопления электрической энергии. По своим свойствам суперкондесаторы занимают промежуточную позицию между традиционными электролитическими конденсаторами и аккумуляторными батареями. Высокие показатели мощности, энергоемкости и надежности позволяют применять суперконденсаторы как в составе разнообразного электротехнического оборудования (например, в источниках бесперебойного питания, резервных силовых установок, систем компенсации пиковой мощности), так и в качестве автономных источников электрической энергии.

Конструктивно суперконденсатор LS Mtron представляет собой два электрода из активированного угля, погруженных в электролит и разделенных между собой диэлектрическим сепаратором, который предотвращает короткое замыкание. Накопление энергии происходит за счет возникновения двойного электрического слоя на границе электрода и электролита. Высокая энергоемкость (в сравнении с обычным электролитическим конденсатором) достигается благодаря двум основным факторам: крайне малой толщине двойного электричекого слоя (физический эквивалент расстояния между обкладками конденсатора обычной конструкции) и пористой структуре электродов (что позволяет увеличить эффективную площадь поверхности).


В процессе зарядки суперконденсатора LS Mtron, случайно распределенные в электролите ионы под действием электрического поля перемещаются по направлению к электроду противоположной полярности. Важно, что этот процесс представляет собой чисто физическое явление, а не химическую реакцию, то есть не изменяет молекулярную структуру компонентов суперконденсатора и является полностью обратимым. Поэтому суперконденсаторы LS Mtron обладают большим ресурсом (как по количеству циклов заряд-разряд, так и по продолжительности хранения и использования), чем любые существующие аккумуляторные батареи и не требуют обслуживания на протяжении всего срока службы.


Основные особенности суперконденсаторов LS Mtron

  •  Номинальное напряжение ≤ 2.8 вольт
  •  Высокая выходная мощность (в сравнении с аккумуляторными батареями)
  •  Высокая энергоемкость (в сравнении с обычными конденсаторами)
  •  Не разрушают окружающую среду
  •  Не требуют обслуживания
  •  Работают в широком диапазоне температур (-40° ÷ +65° C)
  •  Низкое внутреннее сопротивление
  •  Встроенные механизмы балансировки и защиты от высокого напряжения
  •  Удобный для масшабирования конструктив при создании высоковольтных модулей
  •  Эффективный теплообмен


Типовые характеристики суперконденсаторов LS Mtron в сравнении с другими накопителями энергии








ХарактеристикаЭлектролитический конденсаторСуперконденсатор LS MtronАккумуляторная батарея
Время разрядки10-6 … 10-3 секунд1 … 30 секунд0.3 … 4 часа
Время зарядки10-6 … 10-3 секундсекунды … минуты0.5 … 5 часов
Удельная энергоемкость (Вт*ч/кг)< 0.10.1 … 130 … 100
Удельная мощность (Вт/кг)> 10 0001 000 … 2 00050 … 200
КПД≈ 10.9 … 0.950.7 … 0.85
РесурсОчень большой> 500 000500 … 2 000


Суперконденсатор и аккумуляторная батарея имеют различные зарядно-разрядные характеристики. У аккумуляторной батареи график имеет характерную область (плато), на которой напряжение остается практически постоянным в течение определенного времени, тогда как у суперконденсатора зависимость напряжения от времени заряда/разряда линейная. Получить постоянное напряжение можно, добавив к суперконденсатору DC-DC преобразователь. Линейная зависимость позволяет легко вычислять остаток накопленной в суперконденсаторе энергии, контролируя выходное напряжение.


Единицы измерения ёмкости

При проектировании устройств с использованием суперконденсаторов могут возникнуть некоторые трудности в связи с использованием разных единиц для указания емкости конденсаторов (Фарад, Ф) и аккумуляторных батарей (ампер-часы, А*ч). Количество энергии, накопленное в конденсаторе, может быть вычислено с использованием следующего выражения:

Энергия (Дж) = 1/2 * Емкость (Ф) * Напряжение2 (В)

Полученное значение можно преобразовать в А*ч по формуле:

Энергия (А*ч) = Энергия (Дж) / 3600 (секунд)

LS Mtron рекомендует использовать суперконденсаторы в диапазоне напряжения от ½ до максимального (при этом высвобождается ¾ запасенной энергии).





Ёмкость ячейкиСуперконденсатор (Ф)Батарея (Вт*ч)
Рабочее напряжение:
2.8 … 1.4 В
120 Ф0.098 Вт*ч
350 Ф0.286 Вт*ч
3 000 Ф2.45 Вт*ч

ultra-cap.ru

от аккумуляторных батарей до суперконденсаторов



Батареи и конденсаторы предназначены для хранения электричества, но принцип работы у них совершенно разный…

Если вы думаете, что электричество сегодня играет просто важную роль в нашей жизни, то вы еще не осознали насколько она значительная! К примеру, в ближайшие несколько десятилетий наша транспортная система, отопительные сети и др., использующие в качестве источника энергии ископаемое топливо, нуждаются в переходе на электроэнергию, если мы хотим иметь предотвратить катастрофические изменения в окружающей среде. Электричество является чрезвычайно универсальной формой энергии, но имеет один большой недостаток: батареи могут сохранять большое количество энергии, но это занимает несколько часов для зарядки. Суперконденсаторы, с другой стороны, заряжаются почти мгновенно, но могут хранить небольшое количество энергии. В нашем электроприводном будущем, когда будет нужно аккумулировать и быстро расходовать большое количество электроэнергии, вполне вероятно, мы обратимся к суперконденсаторам, которые сочетают в себе лучшее от обычных батарей и конденсаторов. Каковы они и как они работают, рассмотрим поближе.

Как хранится электрический заряд?

Аккумуляторные батареи, так и конденсаторы предназначены для хранения электричества, но принцип работы у них совершенно разный. Батареи имеют два электрических контакта (электрода), разделенных химическим веществом, называемым электролитом. При включении питания, химические реакции происходят с участием обоих электродов и электролита. Эти реакции преобразования химических веществ внутри батареи в другие вещества, сопровождаются выделением электрической энергии. Как только эти химические вещества истощаются, реакции останавливаются, и аккумулятор становится разряженным. Аккумуляторная батарея, например, литий-ионный блок питания, используемый в ноутбуках, мобильных телефонах и других гаджетах, успешно работает на таком цикле, так что вы можете разряжать и заряжать аккумулятор гаджета сотни раз, прежде чем батарея будет нуждаться в замене.

В конденсаторах же применяется принцип статического электричества (электростатика), а не химии для хранения энергии. Внутрь конденсатора помещается две проводящих металлические пластины с изоляционным материалом, диэлектриком, между ними, — так называемый, диэлектрический бутерброд.

Конденсаторы имеют много преимуществ по сравнению с аккумуляторами: они весят меньше, как правило, не содержат вредных химических веществ и токсичных металлов, также их можно заряжать и разряжать миллиард раз, без износа. Но у них есть и большой недостаток: чтобы сохранить значительное количество энергии, вам нужно использовать огромные металлические плиты или же искать более эффективный материал для диэлектрика.

Изучение варианта усовершенствования диэлектрического материала между металлическими пластинами привело ученых в середине 20 столетия к суперконденсаторам.

Что являет собой суперконденсатор?

Суперконденсаторы (часто называемые ультраконденсаторами) имеют много общего и с батарей и с конденсаторами. Как и обычный конденсатор, суперконденсатор состоит из двух пластин, разделенных диэлектриком. Но пластины сделаны не из металла, а из пористого вещества, например, порошкообразного углерода, который дает им эффективно большую площадь для хранения соответственно большего заряда.

Если сравнить электричество с водой, то обычный конденсатор похож на ткань, которая может поглотить небольшое количество влаги, а пористые пластины суперконденсаторов больше похожи на губку, которая может впитать намного больше воды. Это сравнение можно назвать удачным, поскольку пластины суперконденсаторов очень похожи на пористую губку пропитанную электроэнергией.

Как и батареи, суперконденсаторы имеют электролит, электрически активное химическое вещество внутри него, которое отделяет его пластины, что больше похоже на электролит в батарее, чем на диэлектрик в обычных конденсаторах. Электролит, электрически активный слой суперконденсатора, добавляет еще один аспект: заряженные пластины поляризуют электролит, заставляя положительные ионы в нем двигаться в одну сторону, а отрицательные в противоположную, вызывая последующую систему зарядки, что образует, так называемый, электрический двойной слой, который позволяет пластинам сохранять большое количество энергии. Это, кстати, объясняет, почему суперконденсаторы еще называют двухслойными конденсаторами. В отличие от батарей, положительные и отрицательные заряды в суперконденсаторах образуются исключительно за счет статического электричества, а не во время химических реакций.

Суперконденсаторы могут хранить больше энергии, чем обычные батареи и конденсаторы, создавая двойной слой зарядов , разделенных между двумя пластинами из пористых углеродных материалов. Пластины создают между собой двойной слой полярного электролита (на рисунке в — желтый цвет).

Первые суперконденсаторы были придуманы в конце 1950-х с использованием активированного угля в качестве пластин. С тех пор, достижения в области материаловедения привели к применению более эффективных материалов для изготовления пластин, например, углеродные нанотрубки (крошечные углеродные стержни, образованные с использованием нанотехнологий), графен, аэрогель, титанат бария и др.

В чем отличие суперконденсаторов от аккумуляторов и обычных конденсаторов?

Суперконденсаторы иногда могут использоваться в качестве прямой замены батарей. Аккумуляторная дрель на фото, предназначенная для использования в космосе, работает на суперконденсаторах, разработанных NASA. Огромным преимуществом над обычным сверлом является то, что дрель на суперконденсаторах может заряжаться за считанные секунды, а не часы. Фото: NASA Glenn Research Center (NASA-GRC).

В качестве единицы измерения электрического заряда в физике используется фарад (F), названный в честь британского новатора, химика и физика Майкла Фарадея (1791-1867). Типичные конденсаторы, используемые в электросхемах, могут хранить лишь незначительное количество электроэнергии (показатели варьируются в единицах, называемых микрофарад или пикофарад, которые составляют миллионные и миллиардные от 1 фарада). В тоже время, суперконденсаторы могут хранить заряд в тысячи, миллионы или даже миллиарды раз больше (номинальный фарад).

Коммерческие версии суперконденсаторов, сделанные крупнейшими компаниями, имеют емкости мощностью до нескольких тысяч фарад, что все еще представляет собой только часть (может быть, 10-20 процентов) электрической энергии, которую можно «упаковать» в батарею. Но большое преимущество суперконденсаторов состоит в том, что он может заряжаться энергией почти мгновенно, гораздо быстрее, чем батареи. Это объясняется тем, что суперконденсатор работает путем создания статических электрических зарядов на твердых телах, в то время как батареи зависят от медленно текущих химических реакций, часто при участии жидкостей.

Батареи имеют более высокую плотность энергии (они хранят больше энергии на единицу массы), но суперконденсаторы имеют более высокую плотность мощности (они могут выделять энергию намного быстрее). Хотя суперконденсаторы работают при относительно низких напряжениях (около 2-3 вольт), они могут быть последовательно соединены для получения большего напряжения, что может быть использовано в более мощном оборудовании.

Суперконденсаторы функционируют по электростатическому принципу, а не через обратимые химические реакции, теоретически они могут заряжаться и разряжаться любое количество. Они практически не имеют внутреннего сопротивления, что позволяет развить близкую к 100% эффективность их работы.

Группой американских ученых из Университета Дрекселя (Drexel University) в Филадельфии под руководстовом профессора Ю.Гогоци и французской научно-исследовательской организации CNRS , были опубликованы в научном журнале Nature Nanotechnology результаты исследований в области развития суперконденсаторов с особыми свойствами. Используя собственную методику обработки наноматериалов и наноалмазов, американские ученые разработали новую технологию производства миниатюрных суперконденсаторов.

Технология суперконденсаторов можеть найти широкое применение в приборостроении, энергетике (например, дним из распространенных применений является использование в ветряных турбинах, где суперконденсаторы помогают сгладить прерывистое питание от ветра), автомобилестроении, машиностроении, электротехника(в электрических и гибридных транспортных средствах для питания электропривода), также эффективно использование в качестве питания мобильных гаджетов, и др.

 Интервью с профессором Юрием Гогоци об устройствах, которые придут на смену традиционным батарейкам и аккумуляторам, и ситуации на Украине

 

 

 

< Предыдущая   Следующая >

mrc.org.ua

Суперконденсаторы или Ионисторы вместо аккумулятора. Новая технология Ё-мобиль.


Большинство современных конденсаторов имеют емкость в микрофарадах или пикофарадах. Емкость Ионисторов исчисляется Фарадами.

Что бы понять насколько это много, можно вспомнить формулу по которой можно рассчитать необходимую емкость в зависимости от нагрузки.

C=I·t/U ,

 

где

С — емкость, Ф;

I — постоянный ток разрядки, А;

U — номинальное напряжение ионистора, В;

t — время разрядки от Uном до нуля, с;

Сейчас на рынке уже есть ионисторы емкостью в десятки Фарад.

К примеру есть ионистор на 5,5 Вольта емкостью 22 Фарада. Мы зарядим его полностью и подключим лампочку на 1 Ватт (5,5 Вольт  0,18 Ампера).

Итого:

22 Фарада = 0,18 Ампера  t / 5,5 Вольта

t = 672 секунды

Исходя из формулы выше наша лампочка будет гореть  672 секунды или 12 минут. Кажется что это не такая большая величина, но на самом деле мы можем использовать несколько ионисторов сразу.

Для примера существуют суперконденсаторы намного большей емкости.


Модуль суперконденсаторов Maxwell на 500 фарад. Рабочее напряжение 12Вольт — 48 Вольт


К примеру на новом российском авто Ё-мобиль используются конденсаторы фирмы http://www.elton-cap.com/.

Ионисторы этой фирмы достигают емкости в  10 000 Фарад при напряжении 1,5 Вольта. Так же они производят ячейки (модули) с несколькими ионисторами емкостью в 1000 Фарад и рабочим напряжением 15 Вольт.

К сожалению у Суперконденсаторов есть достоинства и недостатки.


— Суперконденсаторы достаточно дорогие поэтому не составляют конкуренции батареям (аккумуляторам), так как конденсаторы емкостью равной емкости одного аккумулятора обойдутся вам в тысячи долларов.

Темнеменее использование суперконденсаторов в электронике более чем оправдано.

— к сожалению на контантах суперконденсаторов  во время всего цикла разрядки падает напряжение, поэтому для устройств которые требуют постоянного напряжение это не применимо. Возможен вариант использования стабилизатора, но при этом устройство будет потреблять больше энергии.

— к сожалению суперконденсатор нельзя полноценно использовать вместе с аккумулятором. Если их подключить параллельно из-за внутреннего сопротивления, аккумуляторная батарея всегда будет отдавать больше тока чем конденсатор.

При этом если потребитель использует импульсный источник питания, в те моменты когда батарея и конденсатор будут отключены — батарея будет заряжать конденсатор, при этом с большими токами и щадящего режима для батареи просто не получится.

Единственный выход использовать Ионисторы как дополнительный источник питания, тоесть заряжать их во время когда сеть не нагружена и полностью отдавать их энергию в нужные моменты, после чего подключать батарею, когда энергия уже исчерпана.

Это значительно усложняет систему а значит и цену таких устройств.

Однако все так же еффективно эти конденсаторы можно использовать в системах рекуперации энергии.

+ очень большое колличество циклов заряда и разряда

+ большие токи отдачи

+ Суперконденсаторы достаточно быстро заряжаются (практически моментально зависит от того какой ток может обеспечить зарядное устройство)

+ Суперконденсаторы  намного меньше обычных конденсаторов и в тоже время имеют намного большую емкость.

+ широкий рабочий диаппазон температур (от -50 до + 50 градусов цельсия)

Возможно за суперконденсаторами будущее, но к сожалению на данный момент они вряд ли смогут полностью заменить аккумуляторы.


Суперконденсаторы BOOSTCAP большой емкости для увеличение потенциала электромобиля. Соединены параллельно с аккумуляторной батарей


Сборка из 200 суперконденсаторов BOOSTCAP установленных в багажник электромобиля для уменьшения нагрузки на аккумуляторы и ускорения зарядки


Хотя на некоторых автомобилях уже сейчас заменяются пусковые батареи на суперконденсаторы, которые куда более эффективно выполняют свои функции. В часности они отдают моментально очень большие токи которые необходимы для удачного пуска двигателя особенно в холодную погоду.

www.insidecarelectronics.com