Схема блок питания 5 вольт – 5

Малогабаритный импульсный блок питания на 5 вольт. Схема

Малые габариты этого импульсного блока питания получены по причине применения радиокомпонентов малых размеров. Из-за того что транзисторы работают в ключевом режиме, они практически не выделяют тепла, что позволяет отказаться от радиаторов.

Описание работы импульсного блока питания (ИБП) на 5 вольт

Посредством сопротивлений R1, R3, R5, R7 рабочие точки транзисторов VT1, VT2 установлены на границу режима отсечки. Транзисторы еще заперты, однако усилена проводимость зоны коллектор-эмиттер, и даже незначительное увеличение потенциала на базе ведет к открытию транзисторов: то есть снижены напряжения вторичных обмоток трансформатора Т1, которые используются для управления.

Для того чтобы сформировать условия для автоматической генерации, можно было бы еще больше усилить проводимость транзисторов, но произвести это методом дальнейшего увеличения напряжения на базе нежелательно, так как проводимость при этом будет разной для различных транзисторов и будет меняться по мере изменения температуры. В связи с этим использованы сопротивления R2, R6, подключенные в параллель транзисторам.

При включении ИБП сглаживающая емкость С1 заряжается сквозь сопротивление R4, предохраняющий диодный мост VD1 от перегрузки. Поступление входного напряжения создает возникновение напряжения на выходе запускающего делителя, построенного на сопротивлениях R2 и R6. Это напряжение приложено к колебательному контуру из первичной обмотки трансформатора Т1 и емкости С2.

Во вторичной обмотке II наводится сигнал ЭДС. Мощность этого сигнала хватает для ввода транзистора VT1 в режим насыщения, поскольку в первый момент ток сквозь него не протекает из-за самоиндукции трансформатора Т1. После начинает идти ток со вторичной обмотки II, который держит транзистор VT1 в открытом состоянии. Транзистор VT2 в течение данного полупериода колебательного режима совершенно закрыт. Его держит в данном положении ЭДС, возникающая во вторичной обмотке III.

После зарядки емкости С2 ток, протекающий сквозь транзистор VT1, пропадает и он закрывается. Во 2-ом полупериоде колебательного режима в контуре (T1, C2) ток в первый момент, когда еще транзисторы заперты, протекает сквозь 2-ое плечо запускающего делителя (параллельно подключены сопротивление R6 и участок коллектор-эмиттер транзистора VT2). Подобно отпирается транзистор VT2 и после находится в открытом состоянии.

После разрядки емкости С2 ток сквозь транзистор VT2 пропадает и он закрывается. Следовательно, ток сквозь транзисторы протекает лишь в том случае, когда они полностью открыты и имеют наименьшие величины участка коллектор-эмиттер, в связи с этим мощность тепловых потерь невелика.

ВЧ колебания выпрямляются диодами VD2, VD3, пульсации сглаживает емкостью С3. Выходное напряжение выставляется постоянным за счет стабилитрона VD4. К выходу блока питания возможно подключить нагрузку с потребляемым током до 40 мА. При более высоком токе потребления усиливаются НЧ пульсации, и снижается выходное напряжение.

Небольшой нагрев транзисторов, который не зависит от тока нагрузки, связан с тем что происходит прохождение сквозного тока сквозь транзисторы, когда 1-й транзистор еще не успел полностью закрыться, а 2-й уже начал открываться. Импульсный блок питания возможно применить вплоть до замыкания выхода, ток которого равен 200 мА.

Детали импульсного блока питания

Трансформатор изготовлен ферритовом магнитопроводе в виде кольца К10х6х5 марки 1000НН. Обмотки I, II, III, IV намотаны проводом ПЭЛШО-0,07 и имеют, соответственно, 400, 30, 30, 20+20 витков. Для увеличения надежности следует хорошо изолировать каждую обмотку тонкой лакотканью либо трансформаторной бумагой. Магнитопровод возможно использовать произвольной проницаемостью и габаритами. Емкость С2 — КМ-4 на номинальное напряжение не менее 250 В.

Если нет малогабаритных высоковольтных конденсаторов, на месте С1 возможно применить пять соединенных в параллель конденсаторов КМ-5 типа Н90 емкостью по 0,15 мкФ. Емкость С3 — К53-16 или произвольная малогабаритная. Все сопротивления марки С2-23, МЛТ или прочие малогабаритные.

fornk.ru

Блок питания.DC 5V. Сделано своими руками.

Всем привет!

В данной статье речь пойдет о блоке питания с напряжением питания 5v. Мы уже изучили стабилизаторы напряжения 5 Вольт (вот здесь), и сегодня давайте попробуем собрать самодельный источник питания для наших схем.

Нам понадобятся:
• Шнур БП компьютера
• Разъем БП компьютера
• Диодный мост
• Трансформатор сетевой
• Стабилизатор напряжения 5 вольт
• Предохранители

Начнем с самого начала. Итак, наш блок питания будет работать от сети 220v переменного напряжения, то есть от обычной розетки. При работе с сетью 220 Вольт, следует соблюдать все нормы техники безопасности. Так же хорошим правилом будет работать одной рукой (при возможности), так как это не даст Вам стать проводником в цепи. Администрация сайта MKPROG и Автор статьи не несут никакой ответственности за Ваши действия и возможные увечья. Прошу Вас помнить, что жизнь одна, и быть предельно аккуратными.

Итак, для пущей надежности предлагаю использовать шнур блока питания компьютера, а так же его разъем. Выглядит это примерно так:

Структурная схема устройства будет выглядеть следующим образом:

Первый элемент который идет после сети — предохранитель. Он, как нам известно, предохраняет цепь от перегрузок по току.

Затем в схему включен трансформатор, который преобразует 220в в 24в. Принцип его действия рассмотрим в отдельном уроке. Пока лишь примем его за элемент преобразующий сетевое напряжение в рамки входных напряжений стабилизаторов.

После трансформатора установлен диодный мост. Диодный мост состоит из четырех диодов, включенных по следующей схеме:

Диодный мост позволяет преобразовать переменное напряжение в постоянное.

После диодного моста, следует так же установить предохранитель. Мною был установлен предохранитель на 10А, который позволит избежать пагубных последствий короткого замыкания.

В итоге мы имеем выпрямленное напряжение вторичной обмотки трансформатора. Его мы преобразуем в стабильные 5 вольт, путем применения стабилизаторов напряжения.

В итоге получилась следующая схема:

Конечный вид устройства:

В итоге за очень малую сумму, мы получили отличный источник питания для наших простых схем. Его характеристики очень сильно зависят от установленного Вами трансформатора, поэтому приводить свои считаю нецелесообразным. Разумеется, данная схема не идеальна, но для начала вполне сойдет.

Дальнейшим улучшением схемы займемся в ближайшее время.

Ваши вопросы, предложения и замечания оставляйте в комментариях.

mkprog.ru

Компактный импульсный блок питания на 5 вольт. Схема

Данный импульсный блок питания на 5 вольт можно применить для питания маломощной нагрузки, например, электронного термометра, микрокалькулятора, электронных часов.

Технические показатели импульсного источника питания

  • Входное напряжение — 220 ±15% В;
  • Частота преобразования — 35 кГц;
  • Предельная мощность нагрузки — 3 Вт;
  • КПД —  до 75%;

Базовым модулем данного импульсного блока питания является преобразователь напряжения на трансформаторе Т1 и транзисторах VT1, VT2, построенный по полумостовой схеме. Диодный мост выпрямляет переменное напряжение сети. На радиоэлементах R1, VD2 – VD4 построен параметрический стабилизатор, который совместно с емкостями C2 – C4 создает делитель напряжения.

Для питания задающего генератора используется напряжение, снятое с VD2. Сопротивление R1 выполняет двойную роль, с одно стороны он является балластным в стабилизаторе, образуя тем самым вольтдобавку для емкости C8, а с другой стороны снижает ток потребления от электросети в момент случайного замыкания на выходе импульсного блока питания.

Операционный усилитель DD1 подключенный по схеме мультивибратора образует задающий генератор. Посредством емкости C7 обеспечивается гальваническая развязка между задающим генератором и VT2.

Трансформатор Т1 собран на ферритовом кольце марки 2000НМ и размером К12х8х3. Его обмотки содержат: I – 500 вит. эмалированного провода ПЭВ-2 диаметром 0,15мм, II – 50 вит. (для 5 вольт) того же провода диаметром 0,31 с отводом посередине.

Настройка импульсного блока питания заключается в подборке сопротивлений R1 и R9 под определенное значение тока нагрузки. Сопротивление R9 подбирают исходя из необходимости насыщения транзистора VT1, которое определяют при помощи осциллографа.

Величину R1 необходимо подобрать такую, чтобы при нормальной нагрузке ток, протекающий сквозь стабилитроны VD3 и VD4, был более 5 мА. Для уменьшения пульсаций напряжения на выходе значения емкостей С3, С4 необходимо в два раза увеличить. Помимо этого, величину пульсаций еще возможно уменьшить путем добавления параллельно емкости С6 оксидного конденсатора на 50…100 мкФ на номинальное напряжение 10 В.

www.joyta.ru

СЕТЕВОЙ БЛОК ПИТАНИЯ НА 5 ВОЛЬТ


   Простой стабилизированный сетевой блок питания на 5 вольт. Данное устройство было задумано для получения напряжения 5 вольт от сети 220 В.

   Дело было в забытым богом деревушке, в таких ситуациях из-за спешки многие забывают самое главное — зарядное устройство мобильного телефона, а ведь без зарядника мобильник долго не продержится. Вот именно из-за такой причины было задумано это устройство, которое было собрано за 15 минут.

   В начале, из-за отсутствия паяльника, блок питания собрал <проводным соединением> просто накручивая проводки на выводы деталей, но позже была разработано печатная плата. Самое дефицитное в БП — стабилизатор, но к счастью был найден нерабочий автомобильный фм модулятор, в котором стоят именно такие микросхемы-стабилизаторы на 5 вольт. Детали со старых плат были выпаяны методом перегрева припоя обыкновенной зажигалкой. Чего только мы не придумаем ради того, чтобы выйти из ситуации:)

   Само устройство состоит из нескольких деталей и наладки не требует, работает сразу после включения. На выходе строго 5 вольт, хотя блок питания и не содержит понижающего сетевого трансформатора.

   Конечно устройство не очень уж и безопасное — оно не имеет гальванической развязки от розетки и касаться его элементов, в том числе и подключенного мобильника — нельзя. Зато для экстремальных условий в самый раз, только зарядный ток ограничен 150 миллиамперами, заряжает правда долго, но всё-же заряжает.

Поделитесь полезными схемами


АВТОМОБИЛЬНЫЙ МОНОБЛОК ДЛЯ САБВУФЕРА

    Изучая схемотехнику автомобильных усилителей мощности, наткнулся на очень интересный моноблок предназначенный для питания автомобильного сабвуфера.


ПАЯЛЬНИК ИЗ ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА

    По сути, жало паяльника закаляется из-за короткого замыкания. Вторичная обмотка содержит пол витка, напряжение прядка 1 вольта, но сила тока доходит до 15 Ампер! Именно из-за пониженного напряжения, нагрузка не столь велика, в ходе работы детали почти холодные.


ЗВОНОК ОТ БРОНИРОВАННОЙ ДВЕРИ

    Такой звонок исправно проработал более 3-х лет, после чего стал очень быстро садить батарейки. Попробуем его разобрать и отремонтировать.


ЗУ ДЛЯ АВТО

   В отличие от другого зарядного устройства, данное усовершенствованное зарядное устройство обеспечивает автоматическое поддержание аккумуляторной батареи в рабочем состоянии не давая ей разряжаться ниже установленного уровня. Описанный цикл работы устройства позволяет использовать eгo для автоматической тренировки аккумуляторных батарей циклами «заряд — разряд» при подключении к нему параллельно аккумуляторной батарее разрядного резистора.


АВТОМОБИЛЬНЫЙ ИНВЕРТОР НА 600 ВАТТ

    Этот китайский автомобильный инвертор можно приобрести буквально в любом магазине электроники, стоит чуть больше 25$. От себя могу сказать то, что только цена компонентов, которые использованы в этом инверторе уже превышает стоимость устройства. 

samodelnie.ru

Поделки своими руками для авто, дачи и дома. Схема блока питания 24 вольта 5 ампер

Регулируемый блок питания 0-24v 5a CAVR.ru

 

 

R1       180R   0,5W

R2       6К8     0,5W

R3       10k    (4k7 – 22k) reostat

R4       6k8      0,5W

R5       7k5      0,5W

R6       0.22R  5W (0,15- 0.47R)

R7       20k      0,5W

R8         100R    (47R – 330R)

 

C1       1000 x35v       (2200 x50v)

C2       1000 x35v       (2200 x50v)

C3       1 x35v

C4       470 x 35v

C5       100n ceramick (0,01-0,47)

F1        5A

 

T1        KT816           (BD140)

T2        BC548           (BC547)

T3        KT815             (BD139)

T4        KT819(КТ805,2N3055)

T5        KT815              (BD139)

VD1-4 КД202         (50v 3-5A)

VD5    BZX27            (КС527)

VD6    АЛ307Б, К (RED LED)

 

 

 

 

 

 

Регулируемый стабилизированный блок питания – 0-24V, 1 – 3А

с ограничением тока.

Блок питания (БП) предназначен для получения регулируемого стабилизированного выходного напряжения от 0 до 24v при токе порядка 1-3А, проще говоря чтобы не покупали вы батарейки, а использовали его для эксперементов со своими конструкциями.

В блоке питания предусмотрена так называемая защита т е ограничение максимального тока.

Для чего это нужно? Для того что бы этот БП служил верой и правдой, не боясь коротких замыканий и не требовал ремонта, так сказать «несгораемый и неубиваемый»

 

На Т1 собран стабилизатор тока стабилитрона, т е имеется возможность установки практически любого стабилитрона с напряжением стабилизации менее входного напряжения на 5 вольт

Это значит, что при установке стабилитрона VD5 допустим ВZX5,6 или КС156 на выходе стабилизатора получим регулируемое напряжение от 0 до приблизительно 4 вольт, соответственно — если стабилитрон на 27 вольт , то максимальное выходное напряжение будет в пределах 24-25 вольт.

 

Трансформатор следует выбирать примерно так- переменное напряжение вторичной обмотки должно быть примерно на 3-5 вольт больше того, которое вы рассчитываете получить на выходе стабилизатора, которое в свою очередь зависит от установленного стабилитрона,

Ток вторичной обмотки трансформатора как минимум должен быть не менее того тока, который нужно получить на выходе стабилизатора.

 

Выбор конденсаторов по емкости С1 и С2 –примерно по 1000-2000 мкф на 1А, С4 – 220 мкф на 1А

Несколько сложнее с емкостями по напряжению – рабочее напряжение грубо рассчитывается по такой методике – переменное напряжение вторичной обмотки трансформатора делится на 3 и умножается на 4

(~Uвх:3×4)

Т е – допустим, что выходное напряжение вашего трансформатора порядка 30 вольт – 30 делим на 3 и множим на 4 – получаем 40 – значит рабочее напряжение конденсаторов должно быть более чем 40 вольт.

Уровень ограничения тока на выходе стабилизатора зависит от R6   по минимуму и R8 (по максимуму вплоть до отключения)

При установке перемычки вместо R8 между базой VТ5 и эмиттером VТ4 при сопротивлении R6 равном 0,39 ом ток ограничения будет примерно на уровне 3А,

Как понять «ограничение»? Очень просто – выходной ток даже в режиме короткого замыкания на выходе не превысит 3 А, за счет того что выходное напряжение будет автоматически снижено практически до нуля,,,

 

А можно ли заряжать автомобильный аккумулятор? Запросто. Достаточно выставить регулятором напряжения , извиняюсь — потенциометром R3 напряжение 14,5 вольта на холостом ходу (т е с отключенным аккумулятором) а потом подключить к выходу блока, аккумулятор, И пойдет ваш аккумулятор заряжаться стабильным током до уровня 14,5в, Ток по мере зарядки будет уменьшаться и когда достигнет значения 14,5 вольта (14,5 в – напряжение полностью заряженного акк) он будет равен нулю.

 

Как отрегулировать ток ограничения. Выставить на выходе стабилизатора напряжение на холостом ходу порядка 5-7 вольт. Затем к выходу стабилизатора подключить сопротивление примерно на 1 ом мощностью 5-10 ватт и последовательно с ним амперметр. Подстроечным резистором R8 выставить требуемый ток. Правильно выставленный ток ограничения можно проконтролировать выкручивая потенциометр регулировки выходного напряжения на максимум до упора При этом ток, контролируеммый амперметром должен оставаться на прежнем уровне.

 

Теперь про детали. Выпрямительный мостик – диоды желательно выбирать с запасом по току минимум раза в полтора, Указанные КД202 диоды могут без радиаторов достаточно долго работать при токе 1 ампер, но ежели рассчитываете что вам этого мало, то установив радиаторы можно обеспечить 3-5 ампер, вот только нужно посмотреть в справочнике какие из них и с какой буквой могут до 3 а какие и до 5 ампер. Хочется больше – загляните в справочник и выбирайте диоды помощнее, скажем ампер на 10.

 

Транзисторы – VT1 и VT4 устанавливать на радиаторы. VT1 будет слегка греться поэтому и радиатор нужен небольшой, а вот VT4 да в режиме ограничения тока будет греться довольно таки хорошо. Поэтому и радиатор нужно подобрать внушительный, можно и вентилятор от блока питания компьютера к нему приспособить – поверьте, не помешает.

 

Особо пытливым – почему греется транзистор? Ток то течет по нему и чем больше ток, тем больше греется транзистор. Давайте посчитаем – на входе, на конденсаторах 30 вольт. На выходе стабилизатора ну скажем вольт так 13, В итоге между коллектором и эмиттером остается 17 вольт.

Из 30 вольт минусуем 13 вольт получаем 17 вольт (кто хочет видит тут математику, а мне как то на память приходит один из законов дедушки Киргофа, про сумму падений напряжения)

Ну так вот , тот же Киргоф, что то говорил о токе в цепи, наподобие того что какой ток течет в нагрузке, такой же ток и через транзистор VT4 течет. Скажем ампера эдак 3 течет, резистор в нагрузке греется транзистор тоже греется, Так вот тепло

xn—-7sbeb3bupph.xn--p1ai

ИСТОЧНИК ПИТАНИЯ 5 ВОЛЬТ 1 АМПЕР

   Продолжаю вторично ипользовать нерабочий компьютерный БП АТХ. На это меня подтолкнула статья уважаемого ear «преобразователь 12-220», в которой он задействовал силовой трансформатор и ШИМ-контроллер, взятые из ненужного БП АТХ. Далее в своей статье «Преобразователь на полевом транзисторе» я использовал магнитопровод от трасформатора для сборки преобразователя на полевом транзисторе. В этой статье мы рассмотрим узел дежурного питания из БП АТХ в качестве простого блока питания для начинающих радиолюбителей. Преимущества такого БП очевидны — малый вес и габариты. А стандартное напряжение +5В может быть использовано для питания множества простых самоделок, например на микроконтроллерах.

   Вообще этот узел не зависим от других узлов АТХ, поэтому его можно просто выпилить с куском платы согласно схеме (в статье не привожу схемы, так как их бывает очень много вариантов) и добавить выпрямитель сетевого напряжения, в моём случае диодный мост — «шоколадка» КЦ405В, фильтрующий конденсатор — два 47,0*250В соединённые последовательно, и предохранитель.

   Перед первым включением в сеть обязательно закройте плату в корпус. У меня корпус из кабельканала, который продаётса в электротоварах, а вместо предохранителя подключите лампу накаливания на 220В 40Вт.

   Так как если Вы вдруг перепутали полярность подключения конденсатора он можен взорватся и испортить не только настроение, но и стол, стены, потолок. Включаем. Если лампа не горит и не слышим баха, то проверяем напряжение на выходе. В итоге оставил только цепь 5В, а элементы цепи 12В удалил. Проведя эксперимент выяснил: при выходном токе 1А за час работы транзистор без радиатора нагрелся до 48 градусов цельсия, что вполне допустимо. Желаю всем пользователям и гостям нашего сайта творческих успехов! С уважением, Андрей Жданов ([email protected]).

   Форум по ИБП

   Обсудить статью ИСТОЧНИК ПИТАНИЯ 5 ВОЛЬТ 1 АМПЕР

radioskot.ru

5 Вольт 2 Ампера блок питания с microUSB штеккером

Началось все с того, что у старенького планшета начал барахлить блок питания и я решил подобрать ему замену. Нашел вариант с привычной нам вилкой и не отсоединяемым кабелем.
Старый блок питания я скорее всего починю и уже даже придумал куда его применить, а сегодня попробую протестировать новый.

Постараюсь сделать обзор коротким, но максимально по делу. Будут как всегда, тесты, разборка, анализ.

Упаковку спрячу под спойлер, там все равно ничего интересного.

Пришел блок питания в конверте, без всяких коробочек и т.п.
К слову в последнее время приятно удивляет скорость доставки с чайнабея, посылки удет примерно полторы недели.5 Вольт 2 Ампера блок питания с microUSB штеккером

Блок питания относительно маленьких размеров, на вид уменьшенная копия популярных блоков 12 Вольт 2 Ампера.
Длина кабеля около 1.4 метра, как по мне лучше бы он был раза в два короче.
Обрадовало несколько вещей.
1. Блок питания действительно с евро вилкой, а не с переходником в комплекте.
2. Кабель не отключаемый, лишние контакты никак не увеличивают надежность.
3. БП брался для планшета u9gt4. Он имеет алюминиевый корпус и далеко не все штеккеры нормально работают. Здесь проблем я не обнаружил.5 Вольт 2 Ампера блок питания с microUSB штеккером
Всем думаю понятно, что без тестов обзор блока питания это вообще не обзор, потому я собрал небольшой стенд для проверки.
В него входило:
Электронная нагрузка + блок питания к ней
Осциллограф
microUSB гнездо с припаянным проводом.
Ну и сам обозреваемый блок питания

Наверняка некоторые читатели скажут, что правильно измерять напряжение на выходе блока питания, а не после кабеля. Но я рассуждал так — раз кабель не отсоединяемый, то заменить его на лучший нельзя, значит он будет работать именно в таком виде, потому и тестировать надо именно так.

5 Вольт 2 Ампера блок питания с microUSB штеккером
Первое испытание на холостом ходу.
Выходное напряжение несколько завышено, позже я объясню почему, но скажу сразу, сделано это было специально.5 Вольт 2 Ампера блок питания с microUSB штеккером
Пульсации измерялись в положении делителя щупа 1:1.
Ну на холостом ходу пульсации бывают очень редко, потому здесь так же все в порядке.
Дальше четыре теста с разным током нагрузки, заодно здесь хорошо видно что такое электронная нагрузка и зачем она нужна.
Испытательные токи:
0.5 Ампера — напряжение в норме.
1.0 Ампера — напряжение в норме, пульсации почти такие же как при 0.5 Ампера и составляют 90мВ.
1.5 Ампера — напряжение еще в норме, но пульсации уже явно повыше, около 120мВ
2.0 Ампера — напряжение уже сильно просело, пульсации выросли до 150мВ.
Не скажу что напряжение пульсаций ну очень критичное, но мне скорее не нравится их форма.5 Вольт 2 Ампера блок питания с microUSB штеккером
Ну и осциллограммы.5 Вольт 2 Ампера блок питания с microUSB штеккером
Еще с далеких времен, когда в ходу была 155 и 555 серия логических микросхем, я привык считать, что пока напряжение питания находится в пределах ±5% (для 5 Вольт), то все нормально.
Соответственно я решил определить максимальный ток, который может выдать БП еще оставаясь в границах допуска.
Измерение показало, что это 1.71 Ампера, хотя БП промаркирован как 2 Ампера.
Но на самом деле это скорее не вина самого БП, а большой длины кабеля. Собственно потому я и жалел что кабель длинный.5 Вольт 2 Ампера блок питания с microUSB штеккером
После этого я погонял блок питания на токе 2 Ампера примерно с пол часа и измерил температуру. БП был включен в настенную розетку, кабелем вниз.
Самая горячая точка была примерно чуть ниже середины БП, температура корпуса в этом месте составила 62.2 градуса. В верху блока питания температура была около 55 градусов.5 Вольт 2 Ампера блок питания с microUSB штеккером
В процессе тестов я пробовал подключать этот БП к своему планшету и увидел знакомый многим дефект в виде «фантомных» нажатий тачскрина.
Выглядело это как:
Нажатие в одном месте, но реально отклик происходил в другом.
На одно нажатие несколько откликов
При длительном нажатии пробегает горизонтальная полоса с видимыми «фантомными» нажатиями. Т.е. правый клик (длительное удержание) произвести просто невозможно, вообще.
все глюки были в горизонтальной плоскости экрана.
Хотя БП брался и не для этого планшета, но я решил попробовать разобраться в проблеме.
Ну а как все понимают, любое разбирательство начинается с разборки 🙂
БП удивил меня в очередной раз. Я уже взял по привычке нож, молоток и стукнул пару раз по шву между половинками корпуса, но сразу понял что что-то не так, звук был другой.
Не дело, подумал я и начал искать крепеж, как и ожидалось он нашелся под наклейкой.
Удобно, уже так привык что БП клееные, что даже непривычно.5 Вольт 2 Ампера блок питания с microUSB штеккером
Долез я до платы и тут меня БП опять удивил.
Еще когда я увидел «фантомы», то первым делом подумал, что БП сделан как всегда по автогенераторной схеме, как самой дешевой и не имеет выходного дросселя.
БП был собран на довольно известном ШИМ контроллере Viper22A и имел выходной дроссель.
А вот входной дроссель отсутствовал 🙁
Зато стоял Y1 конденсатор между входом и выходом, хотя часто ставят просто высоковольтный керамический.
Выходные конденсаторы по 470мкФ, мало, при 2 Амперах надо хотя бы 1000мкФ.5 Вольт 2 Ампера блок питания с microUSB штеккером
Но первое что бросилось в глаза, это слишком мелкий трансформатор. Насколько я знаю, для частоты 60КГц, на которой работает этот ШИМ контроллер, трансформатор должен быть раза в полтора больше.
По входу присутствует предохранитель.
Выше я писал, что объясню почему завышено выходное напряжение. Это не дефект, а именно так и задумано. микросхема, которая следит за выходным напряжением, имеет пороговое напряжение в 2.5 Вольта, значит для 5 Вольт ставят делитель 1 к 2. но здесь стоял делитель из резисторов 4.7 и 5.1 КОм. Соответственно выходное напряжение поднимали специально, именно из расчета работы на большую длину кабеля, но помогло это слабо 🙁5 Вольт 2 Ампера блок питания с microUSB штеккером
Хоть плата сделана на дешевом гетинаксе, пайка вполне терпимая, но ШИМ контроллер явно менялся, присутствуют следы пайки и флюса.5 Вольт 2 Ампера блок питания с microUSB штеккером
Более подробные фотографии.
1. ШИМ контроллер Viper22A, при этих условиях расчетная мощность около 12 Ватт, запас совсем маленький.
2. Выходной диод SR560, Шоттки 5 Ампер, неплохо, при этом рядом присутствует место для еще одного диода, видимо расчет на установку двух более слабых диодов.
А вот кабель для такого тока тонковат, особенно при такой длине.
3. Входной конденсатор на 6.8 мкФ, мало. Для такого БП должно быть 10мкФ или больше.
4. Еще один электролитический конденсатор, в цепи питания ШИМ контроллера. Здесь емкость вполне достаточна. Проблем с запуском БП нет, стартует мгновенно.5 Вольт 2 Ампера блок питания с microUSB штеккером
После осмотра я составил принципиальную схему данного БП.5 Вольт 2 Ампера блок питания с microUSB штеккером
Так как я открыл Бп не только для осмотра, а и для попытки доработки, то я порылся в своих запасах и решил добавить\заменить некоторые компоненты.
1. Увеличить емкость входного конденсатора, но 10мкФ не нашел, пришлось взять 2.2 и добавить параллельно существующему (уменьшение пульсаций на частоте 100Гц и снижение нагрева ШИМ контроллера)
2. Поставить керамические конденсаторы емкостью 0.22мкФ параллельно выходным конденсаторам (уменьшение пульсаций выходного напряжения на ВЧ)
3. Поставить RC цепочку параллельно выходному диоду (немного уменьшает помехи от переключения диода)
4. Заменить выходной дроссель с 10мкГн на 20мкГн, кроме того старый дроссель был намотан явно тонким проводом и замена дросселя даст чуть меньшие потери на нагрев.
5. Заменить одни из выходных конденсаторов на более емкий и качественный.5 Вольт 2 Ампера блок питания с microUSB штеккером
На схеме я пометил цветом измененные и добавленные компоненты.
На самом деле я пробовал еще увеличивать емкость С3 до 100нФ и ставить такой же конденсатор параллельно С4, но разницы не было.5 Вольт 2 Ампера блок питания с microUSB штеккером
Вот как выглядел БП после доработки.5 Вольт 2 Ампера блок питания с microUSB штеккером
Но как показала практика, разницы не было, вообще. Так же никуда не пропали «фантомы».
Увеличение С3 и установка керамического конденсатора параллельно С4 была уже последней попыткой, но это ничего не изменило.
Первый раз моя модификация не помогла. Думаю что объяснение этому может крыться в неправильном трансформаторе, который скорее всего работает в режимах близких к насыщению.

Зато в процессе экспериментов я проверил температуру компонентов в работе. Прогрев около получаса, быстрое открытие корпуса и замер температур:
Трансформатор — 90-93 градуса
ШИМ контроллер — 80 градусов
Выходной диод — 80-86 градусов.

5 Вольт 2 Ампера блок питания с microUSB штеккером5 Вольт 2 Ампера блок питания с microUSB штеккером
Но когда я подключил этот БП к планшету, для которого он вообще предназначался, то увидел что проблем с ним нет, все работает отлично.

После этого я решил уже скорее ради любопытства посмотреть как работает родной БП моего планшета. Ведь с ним проблем нет, можно спокойно работать во время заряда.
Измерение показало, что колебания напряжения от изменения нагрузки гораздо меньше.
При работе без нагрузки он показал около 5.06 Вольта, а под нагрузкой в 2 Ампера — 4.92 Вольта. Результат отличный.

5 Вольт 2 Ампера блок питания с microUSB штеккером
Но когда я увидел осциллограмму пульсаций по выходу этого БП, то подумал, КАК?
Как БП с таким уровнем пульсаций не дает помех работе тачскрина, а при БП с явно меньшим уровнем пульсаций работать вообще невозможно?

На основании тестов, проведенных выше, разборки и попытки переделки, я вполне могу определить плюсы и минусы данного БП.
Плюсы
Блок питания имеет евровилку, а не переходник
Схемотехника с применением специализированного ШИМ контроллера
Неразъемная конструкция кабеля (хотя в данном случае это оказалось и минусом)
Штеккер имеет нормальную фиксацию в разъеме планшета, даже если гнездо утоплено в корпусе.

Минусы
На некоторых устройствах возможны проблемы с тачскрином.
Отсутствие входного фильтра питания.
Занижена емкость конденсаторов и размеры трансформатора.
Большое падение на кабеле из-за большой его длины и малого сечения жил.

Мое мнение. Если рассматривать его как просто блок питания, то он вполне нормально может работать до тока в 1.5 Ампера, при этом не будет проблем с перегревом и просадкой напряжения. но при большем токе напряжение упадет ниже допустимых границ. Так же непонятна причина возникновения помех работе тачскрина, но проблема есть и видна невооруженным глазом, хотя пульсации выходного напряжения не такие уж и большие.

Я не знаю, поможет ли кому нибудь этот обзор, но я старался показать что это за блок питания максимально подробно.

Товар предоставлен для написания обзора магазином.

www.kirich.blog