Схема цифровой частотомер – Частотомер — цифровая шкала с динамической индикацией — Измерительная техника — Инструменты

Цифровой частотомер — Введение в цифровую технику

Материал из РадиоВики — энциклопедии радио и электроники

Конструирование этого измерительного прибора (рис. 46) должно стать для вас обобщением, сведением воедино и практическим применением знаний и навыков по основам цифровой техники. Прибор позволит измерять синусоидальные гармонические и импульсные электрические колебания частотой от единиц герц до 10 МГц и амплитудой от 0,15 до 10 В, а также считать импульсы сигнала.

Рис. 46. Внешний вид цифрового частотомера
Рис. 47. Структурная схема частотомера

Структурная схема описываемого частотомера показана на рис. 47. Его образуют: формирователь импульсов сигнала измеряемой частоты, блок образцовых частот, электронный ключ, двоично-десятичный счетчик импульсов, блок цифровой индикации и управляющее устройство. Питается частотомер от сети переменного тока напряжением 220 В через двухполупериодный выпрямитель со стабилизатором выпрямленного напряжения (на рис. 47 не показаны).

Действие прибора основано на измерении числа импульсов в течение определенного-образцового-интервала времени. Исследуемый сигнал подают на вход формирователя импульсного напряжения. На его выходе формируются электрические колебания прямоугольной формы, соответствующие частоте входного сигнала, которые поступают на электронный ключ. Сюда же через управляющее устройство, открывающее ключ на определенное время, поступают и импульсы образцовой частоты. В результате на выходе электронного ключа появляются пачки импульсов, которые далее следуют к двоично-десятичному счетчику. Логическое состояние двоично-десятичного счетчика, в котором он оказался после закрывания ключа, отображает блок цифровой индикации, работающий в течение времени, определяемого управляющим устройством.

В режиме счета импульсов управляющее устройство блокирует источник образцовых частот, двоично-десятичный счетчик ведет непрерывный счет поступивших на его вход импульсов, а блок цифровой индикации отображает результат счета.

Принципиальная схема частотомера показана на рис. 48. Многие узлы в нем вам уже знакомы. Поэтому рассмотрим более подробно лишь новые цепи и узлы прибора.

Формирователь импульсного напряжения представляет собой усложненный триггер Шмитта, собранный на микросхеме К155ЛД1 (DD1). Резистор R1 ограничивает входной ток, а диод VD1 защищает микросхему от перепадов входного напряжения отрицательной полярности. Подбором резистора R3 устанавливают нижний (наименьший) предел напряжения входного сигнала.

С выхода формирователя (вывод 9 микросхемы DD1) импульсы прямоугольной формы поступают на один из входов логического элемента DD11.1, выполняющего функцию электронного ключа.

Рис.47. (левая часть) Рис.48. (правая часть). Принципиальная схема частотомера

В блок образцовых частот входят: генератор на элементах DD2.1-DD2.3, частота импульсов которого стабилизирована кварцевым резонатором ZQ1, и семиступенный делитель частоты на микросхемах DD3-;DD9. Частота кварцевого резонатора равна 8 МГц, поэтому микросхема К155ИЕ5 (DD3) первой ступени делителя включена так, чтобы частота генератора делилась на 8. В результате частота импульсов на ее выходе (вывод 11) будет 1 МГц. Микросхема каждой последующей ступени делит частоту на 10. Таким образом, частота импульсов на выходе микросхемы DD4 равна 100 кГц, на выходе микросхемы DD5-10 кГц, на выходе DD6-1 кГц, на выходе DD7-100 Гц, на выходе DD8- 10 Гц и на выходе всего делителя (вывод 5 микросхемы DD9)-1 Гц.

Участок измеряемых частот устанавливают переключателем SA1 «Диапазон». В крайнем правом (по схеме) положении этого переключателя трехразрядный блок цифровой индикации фиксирует частоту до 1 кГц (999 Гц), во втором от него положении-до 10 кГц (9999 ГцХ в третьем-до 100 кГц (99999 Гц) и далее до 1 МГц (999 кГц), до 10 МГц (9,999 МГц). Для более точного определения частоты сигнала приходится выбирать переключателем соответствующий поддиапазон измерения, постепенно переходят от более высокочастотного участка к низкочастотному. Так, например, чтобы измерить частоту звукового генератора, надо установить переключатель сначала в положение «х!0 кГц», а затем переводить его в сторону меньших образцовых частот.

Рис. 49. Графики, иллюстрирующие работу управляющего устройства цифрового частого, мера

Управляющее устройство, работу которого иллюстрируют графики, приведенные на рис. 49, состоит из.В-тригге-ров DD10.1 и DD10.2, микросхемы DD10, инверторов DD11.3, DD11.4 и транзистора VT1, образующих усложненный ждущий мультивибратор. На вход С D-триггера DD10.1 поступают импульсы с блока образцовых частот (рис. 49, а). По фронту импульса образцовой частоты, установленной переключателем SA1, этот триггер, работающий в режиме счета на 2, переключается в единичное состояние (рис. 49, 6) и напряжением высокого уровня на прямом выходе (вывод 5) открывает электронный ключ DD11.1. С этого момента импульсы напряжения измеряемой частоты проходят через электронный ключ, инвертор DD11.2 и поступают непосредственно на вход С1 (вывод 14) счетчика DD12. По фронту следующего импульса триггер DD10.1 принимает исходное состояние и переключает в единичное состояние триггер DD10.2 (рис. 49, в). В свою очередь триггер DD 10.2 низким уровнем напряжения на инверсном выходе (вывод 8) блокирует вход управляющего устройства от воздействия импульсов образцовой частоты, а высоким уровнем напряжения на прямом выходе (вывод 9) запускает ждущий мультивибратор. Электронный ключ закрывается напряжением низкого уровня на прямом выходе триггера DD10.1. Начинается индикация числа импульсов в пачке, поступивших на вход двоично-десятичного счетчика.

С появлением напряжения высокого уровня на прямом выходе триггера DD10.2 через резистор R5 начинает заряжаться конденсатор С3. По мере его зарядки увеличивается положительное напряжение на базе транзистора VT1 (рис. 49, г). Как только оно достигнет примерно 0,6 В, транзистор открывается, напряжение на коллекторе уменьшается почти до 0 (рис. 49, д). Появляющееся при этом на выходе элемента DD11.3 напряжение высокого уровня воздействует на входы RO микросхем DD12, DD14 и DD16, в результате чего двоично-десятичный счетчик импульсов сбрасывается в нулевое состояние, отчего результат измерения прекращается. Одновременно напряжение* низкого уровня, появившееся коротким импульсом на выводе 11 инвертора DD11.4 (рис. 49, е), переключает триггер DD10.2 и ждущий мультивибратор в исходное состояние и конденсатор СЗ разряжается через диод VD2 и элемент DD10.2. С появлением на входе триггера DD10.1 очередного импульса образцовой частоты начинается следующий цикл работы прибора в режиме измерения (рис. 49, ж).

Счетчик DD12, дешифратор DD13 и газоразрядный цифровой индикатор HG1 образуют младшую счетную ступень частотомера. Последующие счетные ступени называют старшими. В законченной конструкции частотомера индикатор HG1-крайний справа, влево от него следуют индикаторы HG2 и HG3. Первый из них высвечивает единицы, второй-десятки, третий-сотни частот данного поддиапазона измерения, выбранного переключателем SA1.

Рис. 50. Схема блока питания

Чтобы частотомер перевести в режим непрерывного счета импульсов, переключатель SA2 устанавливают в положение «Счет». В этом случае триггер DD10.1 по входу S переключается в единичное состояние-на его прямом выходе действует напряжение высокого уровня. При этом электронный ключ DD11.1 оказывается открытым и через него на вход двоично-десятичного счетчика непрерывно поступают импульсы входного сигнала. Показания счетчика в этом случае прекращаются при нажатии на кнопку SB1 «Сброс».

Блок питания частотомера (рис. 50) образуют сетевой трансформатор Т1, двухполупериодный выпрямитель VD3, конденсатор С9, сглаживающий пульсации выпрямленного напряжения, и стабилизатор напряжения на стабилитроне VD5 ч транзисторе VT2. Конденсатор СЮ на выходе стабилизатора дополнительно сглаживает пульсации выпрямленного напряжения. Конденсатор СП (как и конденсаторы С4-С8 прибора) блокирует микросхемы частотомера по цепи питания, резистор R16 поддерживает режим стабилизатора при отключенной от него нагрузке.

Напряжение обмотки III трансформатора (около 200…220 В) подается через диод DV4 в цепи питания анодных, цепей газоразрядных цифровых индикаторов частотомера.

Рис. 51. Корпус прибора Рис. 52. Размещение блоков и деталей цифрового частотомера в корпусе

Конструкция. С внешним видом частотомера вы уже знакомы. Его корпус (рис. 51) состоит из двух П-образных частей, согнутых из мягкого листового дюралюминия толщиной 2 мм. Нижняя часть выполняет функцию сборочного шасси. В ее передней стенке, являющейся лицевой панелью прибора, выпилено прямоугольное отверстие, прикрываемое спереди пластинкой красного органического стекла, через которое видны газоразрядные индикаторы. Справа от него- отверстия для крепления входного высокочастотного разъема XS1, переключателя SA1 на пять положений, тумблера SA2 «Измерение-счет» и кнопки SB1 «Сброс». Три отверстия на задней стенке служат для выключателя питания SA3, арматуры плавкого предохранителя FU1 и ввода сетевого шнура. Верхнюю часть — крышку — привертывают винтами МЗ к дюралюминиевым уголкам, приклепанным к шасси вдоль боковых сторон. Снизу к шасси прикреплены резиновые ножки. Монтаж. Детали частотомера смонтированы на четырех печатных платах из фольгированного стеклотекстолита -толщиной 2 мм. представляющих собой функционально законченные блоки прибора. Размещение плат и других деталей частотомера в корпусе показано на рис. 52. Платы винтами с гайками укреплены на пластине листового пластика, а она-на дие шасси. Соединения между платами и другими деталями прибора выполнены гибкими проводниками в надежной изоляции.

Первым монтируйте и испытывайте блок питания. Его внешний вид и печатная плата со схемой размещения деталей показаны на рис. 53. Сетевой трансформатор Т1 самодельный, выполнен на магнитопроводе ШЛ20х32. Обмотка I, рассчитанная на напряжение сети 220 В, содержит 1650 витков провода ПЭВ-1 0,1, анодная обмотка III-1500 витков такого же провода, обмотка II-55 витков провода ПЭВ-1 0,47. Вообще же для блока питания можно использовать подходящий готовый трансформатор мощностью более 7…8 Вт, обеспечивающий на обмотке II переменное напряжение 8… 10 В при токе нагрузки не менее 0,5 А, на обмотке III — около 200 В при токе не менее 10 мА.

Регулирующий транзистор VT2 стабилизатора напряжения укреплен на Г-образной дюралюминиевой пластинке размером 50×50 и толщиной 2 мм, выполняющей функцию теплоотвода. Выводы базы и эмиттера транзистора пропущены через отверстия в плате и припаяны непосредственно к соответствующим печатным проводникам. Электрический контакт коллектора транзистора с выпрямительным блоком VD3 осуществлен через его теплоотвод, крепежные винты с гайками и фольгу платы.

Рис. 53 (а). Блок питания Рис. 53 (б). Блок питания

Сверив монтаж со схемой блока (см рис. 50), подключите к выходу стабилизатора напряжения эквивалент нагрузки-резистор сопротивлением 10… 12 Ом на мощность рассеяния 5 Вт. Подключите блок к сети и тут же измерьте напряжение на резисторе-оно должно быть в пределах 4,75…5,25 В. Более точно это напряжение можно установить подбором стабилитрона VD5. Оставьте блок включенным на 1,5…2 ч. За это время регулирующий транзистор может нагреться до 60…70° С, но напряжение на нагрузке должно оставаться практически неизменным. Так вы испытаете блок питания при работе в условиях, близких к реальным.

Счетчик импульсов и блок цифровой индикации смонтированы на одной общей плате размером 100×80 мм (рис.54). Шины цепи питания размещены на плате со стороны микросхем, что позволило обойтись лишь двумя проволочными перемычками в местах пересечения цепей счетчиков DD12, DD14; DD16. К этим же шинам припаяны блокировочные конденсаторы С7 и С8. Выводы газоразрядных индикаторов пропущены через отверстия в плате и припаяны к токонесущим площадкам, которые затем соединены отрезками монтажного провода с соответствующими им выходами дешифраторов DDI3, DD15 и DD17 (чтобы не усложнять эскиза платы, эти соединения на рис. 54 не показаны).

Рис. 54 (а). Плата счетчика импульсов с блоком цифровой информации Рис. 54 (б). Плата счетчика импульсов с блоком цифровой информации

Тщательно проверив монтаж и надежность паек, соедините плату с блоком питания и, соблюдая осторожность, под-1фючите блок к сети. Индикаторы должны высвечивать нули. Если теперь общий проводник RO-входов счетчиков, который должен соединяться с выводом 8 элемента DD11.3 устройства управления, замкнуть временно на «заземленный» проводник и на вход С1 (вывод 14) счетчика DD12 подать от испытательного генератора импульсы, следующие с частотой повторения 1…3 Гц, этот узел частотомера будет работать в режиме счета импульсов: индикатор HG1 станет высвечивать единицы, HG2-десятки, a HG3- сотни импульсов. После 999 импульсов на индикаторах высветятся нули и начнется счет следующего цикла импульсов.

Рис. 55 (а). Блок образцовых частот Рис. 55 (б). Блок образцовых частот

В случае неполадок в этом узле проверяйте и испытывайте каждый разряд блока индикации раздельно с помощью индикаторов или, что лучше, электронного осциллографа.

Далее монтируйте и испытывайте блок образцовых частот (рис. 55). В нем, как и в блоке цифровой индикации, шины питания и блокировочные конденсаторы размещены на плате со стороны микросхем.

После проверки монтажа подайте на шины питания этого блока напряжение 5 В и, пользуясь светодиодным или транзисторным индикатором, проверьте егс работоспособность. При подключения индикатора к выходу микросхемы DD5 он должен мигать с частотой 1 Гц, к выходу микросхемы DD8-с частотой 10 Гц, а к выходу DD7-с частотой 100 Гц (на глаз незаметно). Затем сигналы с выходов этих микросхем подайте поочередно на вход С1 счетчика DD12 блока цифровой индикации. Работая в режиме счета, он будет индицировать число импульсов, поступающих на него с выходов трех ступеней делителя. Если все будет так, можно считать, что и генератор блока образцовых частот работает исправно.

Формирователь импульсного напряжения, электронный ключ и устройство управления смонтированы на одной общей плате (рис. 56). Испытание этого узла частотомера начинайте с проверки работоспособности формирователя импульсов сигнала измеряемой частоты совместно с другими узлами и элементами прибора. Для этого вход S (вывод 4) триггера DD10.1 временно соедините с «заземленным» проводником (что равнозначно установке переключателя SA2 в положение «Счет»), вывод 6 инвертора DD11.2- с выводом 14 входа С1 счетчи-. ка DD12 и подайте на разъем XS1 сигнал с выхода микросхемы DD9 блока образцовых частот. Индикаторы должны высвечивать последовательно цифры от 1 до 999. При частоте импульсов 10 Гц, снимаемых с выхода микросхемы DD8, скорость счета импульсов возрастает в 10 раз.

Затем проводник, соединяющий вход S триггера DD10.1 с «заземленной» шиной питания, удалите (что соответствует установке переключателя SA2 в положение «Измерение»), вывод 8 инвертора DD11.3 соедините с шиной сброса счетчиков DD12, DD14, DD16 (предварительно удалив перемычку, которой эту шину ранее замыкали на «заземленный» проводник), вход С (вывод 3) триггера DDIO. I соедините непосредственно с выходом блока образцовых частот (вывод 5 DD9), что равнозначно установке переключателя SA1 в положение «xl Гц», и одновременно с разъемом XS1. Теперь индикатор HG1 будет периодически, примерно через 1,5…2 с (в зависимости от длительности зарядки времязадающего конденсатора СЗ), высвечивать цифру 1 (1 Гц).

Рис. 56 (а). Плата формирователя импульсного напряжения и устройств! управления Рис. 56 (б). Плата формирователя импульсного напряжения и устройств! управления

При соединении разъема с выходом микросхемы DD8 блока образцовых частот индикаторы HG1 и HG2 должны высвечивать число 10 (10 Гц). Если же разъем соединить с выходом микросхемы DD7, индикаторы станут высвечивать число 100 (100 Гц).

После этого подайте на вход частотомера переменное напряжение сети, пониженное трансформатором до 1…3 В,- индикаторы зафиксируют частоту 50 Гц. После испытания блоков частотомера прикрепите платы к пластине листового гетинакса (можно текстолита или другого изоляционного материала) в соответствии с рис. 52, а пластину укрепите на дне шасси. Соедините платы между собой и с другими деталями частотомера, установленными на лицевой и задней стенках шасси, многожильными монтажными проводниками в поливинилхлорид-ной изоляции.

Окончательно проверьте работу прибора в режимах «Счет» и «Измерение». Источниками сигнала по-прежнему могут служить импульсы, снимаемые с разных ступеней делителя блока образцовых частот. Какие изменения, дополнения можно внести в цифровой частотомер!?

Начнем с формирователя импульсного напряжения, от которого в значительной степени зависят чувствительность и четкость работы измерительного прибора в целом. Может случиться, что в вашем распоряжении не окажется микросхемы К155ЛД1, представляющей собой два че-тырехвходовых расширителя по ИЛИ, которые во входном блоке частотомера работают в триггерном режиме. Эту микросхему можно заменить одним из триггеров Шмитта микросхемы К155ТЛ1, если дополнить его однотранзисторным усилительным каскадом. Без предварительного усиления напряжения измеряемой частоты чувствительность частотомера будет хуже, чем с формирователем на микросхеме К155ЛД1.

Схему такого варианта входного блока частотомера вы видите на рис. 57. Переменное напряжение измеряемой частоты через резистор R1 и конденсатор С1 подается на базу транзистора VT1 усилительного каскада, а с его нагрузочного резистора R4 — на вход триггера Шмитта DD1.1. Формируемые триггером импульсы, частота следования которых соответствует -частоте входного сигнала, снимаются с его выходного вывода 6 и далее поступают на входной вывод 2 электронного ключа DD11.1 управляющего устройства частотомера.

Какова роль кремниевого диода VD1 и резистора R1 на входе прибора? Диод ограничивает отрицательное напряжение на эмиттерном переходе транзистора. Пока напряжение входного сигнала не превышает 0,6…0,7 В, диод практически закрыт и не оказывает никакого влияния на работу транзистора как усилителя. Когда же амплитуда измеряемого сигнала оказывается больше этого порогового напряжения, диод при отрицательных по-лупернодах открывается и таким образом поддерживает на базе транзистора напряжение, не превышающее 0,7…0,8 В.- А резистор R1 предотвращает протекание через диод опасного для него тока лри входном сигнале повышенного напряжения.

Конденсатор С2 блокирует усилительный каскад и микросхему формирователя по цепи питания. Налаживание формирователя сводится к подбору резистора R2. Добиваются, чтобы на коллекторе транзистора (относительно общего провода) было напряжение 2,5…3 В.

Рис. 57. Формирователь импульсного напряжения на триггере Шмитта микросхемы К155ТЛ1

Чувствительность частотомера с таким формирователем импульсного напряжения будет не менее 50 мВ, что более чем на порядок лучше, чем с формирователем на микросхеме К155ЛД1.

Схема другого варианта формирователя, обеспечивающего частотомеру примерно такую же чувствительность, показана на рис. 58. Его входная цепь и усилитель-такие же, как в формирователе предыдущего варианта. А функцию самого формирователя импульсного напряжения из усиленного сигнала выполняет триггер Шмитта на логических элементах DD1.1 я DD1.2 микросхемы К155ЛАЗ. Подобный триггер Шмитта уже использовался вами в простом частотомере со стрелочным индикатором на выходе (см. рис. 24). Инвертор DD1.3 улучшает форму импульсов, подаваемых на вход электронного ключе устройства управления.

Итак, еще два возможных варианта формирователя импульсного напряжения, отличающихся один от другого используемыми в них микросхемами, но практически одинаковых по чувствительности. На каком из них остановиться, если не окажется микросхемы К155ЛД1 и, *роме того, пожелаете улучшить чувствительность частотомера? Решить этот вопрос можно опытным путем: испытать в работе оба варианта и монтировать тот из них, с которым частотомер работает четче. Выбору может помочь электронный осциллограф, на экране которого можно наблюдать формируемые импульсы. Предпочтение следует отдать формирователю, фронты и спады выходных импульсов которого круче, имеющие одинаковые длительности самих импульсов и пауз между ними.

Может случиться, что при измерении частоты более нескольких килогерц будут наблюдаться мерцания светящихся цифр индикаторов и, кроме того, прибор иногда будет показывать в два раза большую частоту. В чем причины этих явлений и как их устранить, если, конечно, они наблюдаются в готовом частотомере или появятся позже?

В описанном частотомере время индикации результата измерения зависит от положения переключателя SA1 «Диапазон». При частоте тактовых импульсов более 1 кГц, поступающих от блока образцовых частот на вход управляющего устройства, конденсатор СЗ не всегда успевает полностью разрядиться за время между двумя соседними импульсами, из-за чего при следующем цикле работы он начинает заряжаться с более высокого напряжения на нем. В результате время индикации (см. рис. 49, в и ж) уменьшается и свечение индикаторов начинает мерцать.

Причина второго явления — некоторая нестабильность конечной длительности сигнала «сброс» (см. рис. 49,е) устройства управления в исходное состояние. По фронту этого импульса триггер DD10.2 переключается в нулевое состояние и напряжение высокого уровня на его инверсном выходе (вывод 8) разрешает работу триггера DD10.1. И если тактовый импульс образцовой частоты поступит на вход С этого триггера в промежуток времени, когда сигнал сброса еще не закончился, то триггер DD10.1 переключится в единичное состояние, начнется счет входных импульсов, на что Триггер DD10.2 своевременно не среагирует, так как после такого цикла работы сигнала сброса не будет. В итоге индикаторы будут фиксировать сумму частот измеренного сигнала и показания «внепланового» цикла работы управляющего устройства.

Оба эти недостатка нетрудно устранить введением в устройство управления еще одного D-триггера, DD10.1, выделенного на рис. 59 утолщенными линиями. В таком случае с появлением сигна-. ла «сброс» работа триггера DD10.1 еще запрещена напряжением низкого уровня, поступающим на его вход R с выхода триггера DD10.1. Разрешение на его работу дает дополнительный триггер по окончании импульса, приходящего на его вход С. Период следования этих импульсов должен быть таким, чтобы во время пауз между ними конденсатор СЗ успевал полностью разрядиться. Эта задача решается подачей на вход С триггера DD10.1 импульсов частотой следования 10 Гц, снимаемых с вывода 5 счетчика DD8 блока образцовых частот.

Рис. 58. Схема формирователя импульсного напряжения на логических элементах микросхемы К155ЛАЗ Рис. 59. Схема устройства управления с дополнительным D-трнггером

Блок цифровой индикации частотомера трехразрядный, что, конечно, создает некоторые неудобства пользования прибором, о чем мы уже говорили ранее. Но так сделано исключительно с целью упрощения, уменьшения числа используемых микросхем и знаковых индикаторов. Чтобы измерительный прибор стал четырехразрядным, его надо дополнить комплектом микросхем и индикатором, соответствующим комплекту деталей одного разряда, как показано на схеме рис. 60. Счетчик DD18, дешифратор DD19 и индикатор HG4, образующие четвертый разряд (теперь он будет старшей счетной ступенью и в конструкции находиться крайним левым), соединяют между собой так же, как детали других разрядов. Вход С1, (вывод 14) счетчика этого разряда соединяют с выходом 8 (вывод 11) счетчика DD16 третьего разряда, а его вход RO (вывод 2)-с аналогичными входами всех других счетчиков блока индикации. Питание на анод индикатора HG4 подают, как и на аноды других индикаторов, через ограничительный резистор R15 такого же номинала.

Рис. 60. Схема дополнительной счетной ступени блока цифровой индикации

При желании и наличии деталей блок цифровой индикации можно дополнить еще одной счетной ступенью — пятой. Но, как показывает радиолюбительская практика, в этом особой необходимости нет.

Следующий вопрос, который мы предвидим: какие знаковые индикаторы, кроме ИН-8-2, подойдут для частотомера? Любые другие индикаторы тлеющего разряда, например ИН-2, ИН-14, ИН-16. Надо только при монтаже учитывать соответствующую им цоколевку. Распознать же или уточнить цоколевку используемого индикатора нетрудно опытным путем, подавая на выводы его электродов постоянное или пульсирующее напряжение 150…200 В (через ограничительный резистор сопротивлением 33…47 кОм). За исходный удобно принять вывод анода-он хорошо просматривается через стеклянный баллон индикатора. Соединив с ним плюсовой проводник источника напряжения, отрицательным проводником источника касайтесь поочередно других выводов. При этом будут светиться цифры, соответствующие цоколевке проверяемого индикатора.

И еще один вопрос, касающийся выбора- кварцевого резонатора. Генератор блока образцовых частот-«сердце» частотомера, от ритмичности которого зависит точность измерений. Поэтому его работа стабилизируется кварцевым резонатором. В принципе, частоту генератора можно стабилизировать, например, частотой переменного напряжения электроосветительной сети (как это сделано в описанном выше реле времени). Но она, к сожалению, в разное время суток может отличаться от 50 Гц на 0,5… 1 Гц. Соответственно будет «плавать» частота генератора и, следовательно, погрешность измерений. В результате цифровой частотомер утратит свои достаточно высокие качества.

Вот почему без резонатора не обойтись. А как быть, если резонатора на частоту 8 МГц, использованного в описанном частотомере, нет? Подойдет любой другой кварцевый резонатор. Конечно, лучше использовать резонатор на частоту 1 МГц, потому что в этом случае отпадает надобность в микросхеме D03 первой ступени делителя, и сигнал с выхода генератора можно подать сразу на вход микросхемы DD4. Подойдет, также кварцевый резонатор на частоту 100 кГц-тогда можно исключить и микросхему DD4. В обоих случаях делитель блока образцовых частот упростится.

Рис. 61. Схема делителя частоты генератора с кварцевым резонатором на 1,96 МГц

А если и таких кварцевых резонаторов нет? Тогда используйте любой другой с резонансной частотой от 0,1 до 10 МГц. Вот конкретный пример. Допустим, есть резонатор на частоту 1,96 МГц (1960 кГц). В таком случае делитель до целого кратного числа 10 кГц можно построить по схеме, приведенной на рис. 61. Сам генератор остается без изменений. Его частоту, равную 1960 кГц, JK-триггер 2, а счетчики DD2 и DD3 совместно с микросхемой DD4 делит на К155ЛА1 (два логических элемента 4И-НЕ) дополнительно еще на 98 (2x7x7). В результате на выходе трех ступеней делителя формируются импульсы частотой 10 кГц, которые надо подавать непосредственно на вход S микросхемы DD6 делителя конструируемого частотомера.

Как видите, при использовании практически любого кварцевого резонатора надо лишь изменить построение первых ступеней делителя частоты. В этом вам поможет \ соответствующая справочная литература.

radiowiki.ru

Цифровой частотомер

Схема простого цифрового частотомера, который несложно собрать своими руками

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

Одним из основных приборов в радиолюбительской практике является цифровой частотомер. В данной статье описывается схема очень простого цифрового частотомера, предназначенного для измерения частот от 10Гц до 100кГц.

Период однократного измерения составляет две секунды (одна секунда на измерение, одна – на просмотр результата). Входной усилитель построен на операционном усилителе А1. Измеряемый сигнал поступает на коаксиальный разъем (используется видеоразъем “Азия” от телевизора или видеомагнитофона), затем на неинвертирующий вход вход А1, диоды VD1 и VD2 защищают вход А1 от перегрузки входным сигналом. Делитель R4, R5 с блокировочным конденсатором С3 создает среднюю точку напряжения, чтобы А1 мог работать в схеме с однополярным питанием. После усиления сигнал доводиться до прямоугольной формы триггером Шмитта на элементах микросхемы D6. С выхода триггера импульсы измеряемой частоты поступают на счетный вход (вывод 4) пятиразрядного счетчика на микросхемах D1-D5 и светодиодных индикаторов Н1-Н5. Устройство управления выполнено на двух микросхемах D7 (К176ТМ2) и D8 (К176ИЕ12). Микросхема D8 служит генератором импульсов образцовой частоты 1 Гц. Частота этих импульсов стабилизирована кварцевым резонатором Q1. Импульсы снимаются с вывода 4 и поступают на вход делителя на 2, собранного на D-триггере D7. После чего импульсы измеряемой частоты поступают на вход “С” декадного счетчика. В схеме можно использовать практически все семисегментные светодиодные индикаторы, включив соответственно цоколевке. Если индикаторы с общим катодом то схема не меняется. Если индикаторы с общим анадом, то в схему нужно ввести изменения – общие аноды индикаторов соединить  с плюсовой шиной питания, так же, с плюсовой шиной питания нужно соединить и выводы 6 D1-D5.



radio-stv.ru

ЦИФРОВОЙ ЧАСТОТОМЕР | Техника и Программы

Большинство конструкций цифровых частотомеров, описанных в литературе, содержит немало дефицитных компонентов, а в качестве источника стабильной частоты в таких приборах применяется дорогостоящий кварцевый резонатор. В итоге частотомер получается сложным и дорогим.

Предлагаем читателям описание простого частотомера с цифровым отсчетом, источником стабильной (эталонной) частоты в котором служит сеть переменного тока 50 Гц. Прибор найдет применение при различных измерениях в радиолюбительской практике, например в качестве калиброванных шкал в генераторах звуковой частоты, повышающих их достоверность, или вместо громоздких конденсаторных частотомеров. Со светодиодными или магнитными датчиками данный прибор можно применять для контроля числа оборотов электродвигателей и т. д.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ЦИФРОВОГО ЧАСТОТОМЕРА:

диапазон измеряемых частот, Гц…….. 10—999.9Х103

действующее значение входного напряжения, В…….0,02—5

время измерения, с …. 0,01; 0,1; 1

потребляемая мощность, Вт …. 3

погрешность измерения, счета……..±4Х10-3±1.

Суммарная относительная погрешность измерения частоты определяется соотношением:

б1=±бэт± 1/N,

где бэт — частотная погрешность эталонной частоты;

1/N — погрешность дискретности (не зависит от измеряемой частоты и равна ±1 счета младшего разряда).

Из приведенной формулы видно, что погрешность измерений находится в прямой зависимости от стабильности частоты сети 50 Гц. Согласно ГОСТу нестабильность частоты сети 50 Гц составляет ±0,2 Гц за 10 минут. Следовательно, относительную погрешность частотомера можно считать равной ±4Х10-3 ±1 счета. При практических измерениях относительная погрешность частотомера составила ±2Х Х10-3 ±1 счета.

Действие частотомера основано на подсчете количества периодов измеряемого сигнала за эталонные (0,01; 0,1; 1 с) промежутки времени. Результаты измерений отображаются на цифровом табло и автоматически повторяются через определенные промежутки времени.

Частотомер (рис. 1) включает в себя: усилитель-формирователь входного сигнала, временной селектор, декадный счетчик, цифровой индикатор, формирователь сети, формирователь эталонных временных интервалов, устройство управления и сброса, блок питания.

В усилителе-формирователе происходит усиление и преобразование сигнала измеряемой частоты fx в прямоугольные импульсы той же частоты, которые поступают на один из входов временного селектора. На другой его вход подают с устройства управления и сброса прямоугольные импульсы эталонных временных интервалов. В формирователе сети вырабатываются прямоугольные импульсы частотой 100 Гц.

Время измерения, в течение которого открыт селектор, выбирают переключателем SA. В момент прихода эталонного импульса временной селектор открывается и на его выходе появляется пачка прямоугольных импульсов измеряемой частоты fx. Длительность пачки соответствует длительности эталонного импульса, «выбранного переключателем SA. Далее происходит подсчет импульсов в пачке и индикация их на цифровом табло.

По истечении времени индикации импульс сброса (с устройства управления и сброса) воздействует на временной селектор и декадный счетчик— табло очищается, а селектор подготавливается к новому циклу измерений.

Принципиальная схема частотомера — на рисунке 2. Входной сигнал измеряемой частоты усиливается резис-тивным усилителем на транзисторе VT1 и окончательно формируется элементами DD4.1, DD4.2 в последовательность прямоугольных импульсов измеряемой частоты. Входная цепь VT1 имеет защиту по току (R3) и напряжению (VD1). С вывода 6 DD4.2 импульсы прямоугольной формы входного сигнала поступают на один из входов (вывод 9 DD4.3) временного сейектора. На второй вход (вывод 10 DD4.3) подают прямоугольные импульсы эталонных интервалов времени. По окончании действия эталонного импульса временной селектор блокируется, входные импульсы на счетчик не проходят.

Подсчет входных импульсов осуществляется четырехразрядным счетчиком на микросхемах DD6—DD9, а индикаторы HG1—HG4 показывают частоту входного сигнала в цифровой форме.

На диодах VD10—VD13 выполнен выпрямитель сетевого напряжения. Пульсирующее (с частотой 100 Гц) напряжение преобразуется триггером Шмитта (DD1.1, DD1.2) в прямоугольные импульсы частотой 100 Гц, которые затем поступают на двухступенчатый декадный делитель DD2, DD3. Таким образом, на выходах микросхем DD1.2 (вывод 11), DD2 (вывод 5), DD3 (вывод 5) получают импульсы эталонных временных интервалов 0,01, 0,1 и 1 с. Время измерения устанавливают переключателем SA2.

Устройство управления и сброса состоит из D-триггеров DD5.1 и DD5.2 и транзисторов VT2 и VT3. Счет частоты входного сигнала начинается, когда передний фронт эталонного импульса поступает с переключателя SA2.1 на вход D триггера DD5.1, который переключается в «единичное» состояние.

Рис. 1. Блок-схема частотомера:

1 — усилитель-формирователь входного сигнала, 2 — временной селектор, 3 — декадный счетчик, 4 — цифровой индикатор, 5 — формирователь сети, 6 — формирователь эталонных временных интервалов, 7 — устройство управления и сброса, 8 — блок питания.

На вывод 10 DD4.3 временного селектора с триггера DD5.1 (вывод 5) поступает сигнал логической 1 и разрешает проход прямоугольных импульсов входной частоты на вход счетчика DD6 (вывод 4). По истечении выбранного эталонного интервала времени (0,01, 0,1, 1 с) на вход D триггера DD5.1 вновь поступает эталонный импульс, триггер возвращается в исходное состояние, блокируя временной селектор и переключая в «единичное» состояние триггер DD5.2. Начинается процесс индикации частоты входного сигнала на цифровом табло.

На выводе 9 DD5.2 появляется сигнал логической 1, и через резистор R11 начинается процесс заряда конденсатора С5. Как только напряжение на базе транзистора VT2 достигнет напряжения примерно 1,2 В, транзистор откроется и на его коллекторе появится короткий отрицательный импульс, который через МС DD1.3, DD1.4 переключит триггер DD5.2 в исходное состояние. Конденсатор С5 через диод VD2 и микросхему DD5.2 быстро разрядится почти до нуля.

Рис. 2. Принципиальная схема прибора:

DD1, DD4 К155ЛАЗ; DD3 К155ИЕ1; DD5 К.155ТМ2; DD6—DD9 К176ИЕ4; VD6—VD9 Д226А, VD10—VD13 Д9Б, HG1—HG4 ИВ ЗА.

Рис. 3. Внешний вид частотомера.

Рис. 5. Схема расположения элементов в корпусе частотомера:

1 — сетевой индикатор, 2 — тумблер включения сети, 3 — силовой трансформатор, 4 — держатель предохранителя, 5 — печатная плата, 6 — светофильтр, 7 — переключатель временных интервалов.

Отрицательный импульс сброса на коллекторе VT2 инвертируется транзистором VT3, воздействуя на входы R микросхем DD6—DD9 и сбрасывая показания — индикация результатов измерения прекращается. По приходу фронта следующего эталонного импульса процесс повторяется.

В частотомере применены резисторы МЛТ-0,25, конденсаторы К50-6 и КЛС. Указанные в схеме транзисторы КТ315 и КТ361 (с любым буквенным индексом) заменяются любыми кремниевыми высокочастотными транзисторами соответствующей структуры. Вместо диодов КД522Б можно использовать любые из серии КД521, КД520. Диод ГД511Б можно заменить на Д9.

Микросхемы серии К155 могут быть заменены на аналогичные серии К133. Индикаторы ИВ-ЗА заменяются на ИВ-3. Трансформатор блока питания имеет мощность 5—7 Вт. Напряжение на обмотках: II — 0,85 В (ток 200 мА), III — 10 В (ток 200 мА), IV — 10 В (ток 15 мА). Диодные мосты VD6— VD9 и VD10—VD13 можно запитать от одной 10 В обмотки (ток не менее 220 мА). Транзистор VT4 имеет радиатор 20X30X1 мм, выполненный из двух алюминиевых пластин, которые при помощи винта МЗ и гайки прикреплены к транзистору с двух сторон.

Рис. 4. Печатная плата со схемой расположения элементов.

Частотомер изготовляется с целью замены калиброванной шкалы в генераторе низкой частоты (ГНЧ). Из генератора удален оцифрованный барабан. В окне табло, закрытом прозрачным оргстеклом с зеленым светофильтром, размещены цифровые индикаторы (рис. 3).

Частотомер может быть использован и по своему прямому назначению. Для этого введен переключатель SA1, расположенный на передней панели генератора.

Печатная плата частотомера изготовлена из фольгированного гетинакса толщиной 1,5—2 мм (рис. 4). Соединение индикаторов HG1—HG4 с интегральными микросхемами DD6—DD9 производится со стороны печатных проводников.

Все соединения желательно выполнить одножильным изолированным проводом (например, 0 0,3 мм из телефонного кабеля). Цепи переменного тока — многожильным проводом 0 0,7—1,5 мм.

Рис. 6. Конструкция корпуса: нижняя (1) и верхняя (2) П-образные панели. Отверстия под органы управления сверлятся по месту.

Необходимо обратить внимание на правильную установку цифровых индикаторов HG1 — HG4. Они должны быть размещены в одной плоскости и на одном уровне и отстоять от передней кромки печатной платы на расстоянии 2—3 мм. Резистор R18 и све-тодиод VD6 расположены на передней панели прибора. Вариант расположения узлов в частотомере (без ГНЧ) показан на рисунке 5.

Рис. 7. Схема подсоединения переключателя для измерения периода сигналов.

Корпус прибора с указанием необходимых размеров — на рисунке 6. Он изготовлен из дюралюминия Д16АМ толщиной 1,5 мм. Верхняя и нижняя П-образные половины корпуса соединяются с помощью дюралюминиевых уголков 12Х 12 мм, наклепанных на нижнюю половину корпуса, в которых просверлены отверстия и нарезана резьба МЗ.

Печатная плата крепится к днищу частотомера при помощи винтов МЗ и пластмассовых втулок высотой 10 мм.

У микросхем DD2 и DD3 перед установкой на печатную плату третью и двенадцатую ножки необходимо укоротить до утолщения.

Налаживание прибора начинают с проверки монтажа, далее измеряют напряжения блока питания, которые должны соответствовать указанным на принципиальной схеме.

На цифровом табло высветятся нули. Это говорит о работоспособности частотомера. Переключают SA2 в крайнее правое (по схеме) положение, а на вход частотомера (при помощи перемычки) подают с вывода 11 DD1.2 прямоугольные импульсы частотой 100 Гц. На табло высвечивается число 0.100. В случае другой комбинации цифр, подбирая R2, добиваются правильной работы формирователя сети.

Завершающую настройку изготовленного частотомера производят при помощи генератора, осциллографа и промышленного частотомера, например Г4-18А, С1-65 (Н-313), 43-30.

На вход частотомера (R3) подают сигнал частотой 1 МГц и напряжением 0,02 В. Подбирая резистор R5, добиваются максимального усиления транзистора VT1. Изменяя частоту и амплитуду входного сигнала, контролируют работу частотомера в соответствии с техническими характеристиками, сличая показания с приборами заводского изготовления.

Если необходимо измерять низкие частоты с большой точностью, следует увеличить вр.емя счета. Для этого формирователь эталонных временных интервалов необходимо дополнить еще одним декадным делителем (включив его так же, как DD2 и DD3), увеличив время счета до 10 с.

Можно также измерять не частоту входного, сигнала, а его период. Для. этого следует ввести в частотомер дополнительный переключатель, схема которого показана на рисунке 7.

В. РАСТВОРОВ,

г. Таганрог, Ростовская обл.

«Моделист-Конструктор» 10 1990

OCR Pirat

nauchebe.net

Частотомер до 1250 МГц — RadioRadar

Измерительная техника

Главная  Радиолюбителю  Измерительная техника



Этот прибор имеет не только большой верхний предел измеряемой частоты, но и ряд дополнительных функций. Он измеряет уход частоты от начального значения, длительность импульсов и пауз между ними, подсчитывает число импульсов. Его можно использовать и как делитель частоты входного сигнала с задаваемым в широких пределах коэффициентом деления.

Предлагаемый частотомер содержит шесть микросхем — компаратор напряжения AD8611ARZ [1], синтезатор частоты LMX2316TM [2], D-триггер 74HC74D [3], селектор-мультиплексор 74HC151D [4], микроконтроллер PIC16F873A-1/SP [5] и интегральный стабилизатор напряжения TL7805. Результаты измерения он выводит на символьный ЖКИ Wh2602B [6].

Основные технические характеристики

Интервал измеряемой частоты

импульсов с уровнями ТТЛ, Гц……………0,1…8·107

аналоговых периодических сигналов произвольной формы напряжением более 100 мВэфф, Гц…………………1…8·107

синусоидальных ВЧ-сигналов напряжением более 100 мВэфф, МГц ……………20…1250

Длительность счёта при измерении частоты, мс ……104, 103, 100, 10

Интервал измеряемой длительности импульсов, мкс ……..10…106

Максимальная частота следования подсчитываемых импульсов, кГц ……………100

Максимальное число подсчитанных импульсов …..100 000 000

Измеряемый уход частоты

импульсов на входе ТТЛ или сигнала на аналоговом входе, Гц……….±1…±106

сигнала на входе ВЧ, кГц ……………….±1…±105

Коэффициент деления частоты сигнала

поданного на аналоговый вход…………..3 — 16383

поданного на вход ВЧ …………….1000 — 65535

Уровни выходных импульсов делителя частоты………….ТТЛ

Длительность выходных импульсов делителя частоты, мкс…………………..0,5

Напряжение питания (постоянное), В……………….9.16

Потребляемый ток, мА ……100…150

При выключении прибора установленные режимы его работы микроконтроллер запоминает в своём EEPROM и восстанавливает при включении.

Схема частотомера изображена на рис. 1. Тактовый генератор микроконтроллера DD3 стабилизирован кварцевым резонатором ZQ1. Подстроечный конденсатор C13 позволяет установить тактовую частоту в точности равной 4 МГц. Стабилизатор напряжения +5 В собран на микросхеме DA2. Подстроечным резистором R23 регулируют яркость подсветки экрана ЖКИ HG1. Оптимальную контрастность изображения на нём устанавливают подстроечным резистором R21.

Рис. 1. Схема частотомера

Кнопками SB1-SB3 управляют прибором. Кнопка SB1 служит для выбора измеряемого параметра. Кнопкой SB2 выбирают разъём, на который подают измеряемый сигнал. В зависимости от частоты и формы входного сигнала это может быть XW1 (импульсы логических уровней частотой 0,1 Гц…80 МГц), XW2 (аналоговые сигналы произвольной формы частотой 1 Гц…80 МГц) или XW3 (сигналы частотой 20…1250 МГц). Кнопкой SB3 запускают и останавливают измерение в режимах счётчика импульсов и измерения ухода частоты. Длительным (более 1 с) нажатием на эту кнопку переходят из режимаизмерения частоты в режим её деления и вывода результата на разъём XW1. Когда кнопки не нажаты, на входах микроконтроллера, с которыми они соединены, резисторы R12-R14 поддерживают высокие уровни.

Резисторы R4 и R6 создают постоянное смещение около 100 мВ на неинвертирующем входе компаратора DA1. Резисторы R5 и R7 — цепь положительной обратной связи, нужной для получения гистерезиса в характеристике переключения компаратора. Диоды VD1 и VD2 вместе с резистором R2 образуют двухсторонний ограничитель входного напряжения на инвертирующем входе компаратора.

Микросхема DD1, основное назначение которой — работа в синтезаторах частоты диапазона 1,2 ГГц, содержит два делителя частоты с переменным коэффициентом деления, которые и используются в описываемом приборе для деления частоты входных сигналов, подаваемых на разъёмы XW2 и XW3, в заданное число раз. Микроконтроллер устанавливает коэффициенты деления и режим работы этой микросхемы, подавая команды по её последовательному интерфейсу (входы Clock, Data, LE). В зависимости от установленного режима на выход Fo/LD поступает результат работы одного из этих делителей. Резистор R19 и конденсатор C19 образуют фильтр питания микросхемы DD1, а диоды VD3 и VD4 защищают от перегрузки вход одного из её делителей частоты, непосредственно связанный с разъёмом XW3. На триггере DD4.1 собран одновибратор, формирующий из выходных сигналов делителей частоты импульсы длительностью 0,5 мкс. Его времязадающая цепь — резистор R17 и конденсатор C10.

Формирователь импульсов, подаваемых на разъём XW1, собран на транзисторе VT1 с коллекторной нагрузкой — резистором R8. Он работает, когда на выходе RC5 микроконтроллера установлен высокий логический уровень. В противном случае формирователь выключен и не оказывает влияния на подаваемые на разъём XW1 внешние сигналы. Поэтому разъём XW1 может быть как входным при измерении частоты и длительности логических сигналов, а также при счёте импульсов, так и выходным в режимах деления частоты. Резистор R11 служит для защиты входа 0 селектора-мультиплексора DD2 от случайно поданных на разъём XW1 сигналов большой амплитуды.

Селектор-мультиплексор по командам микроконтроллера подаёт на его предназначенные для измерения частоты и длительности импульсов входы либо импульсы уровней ТТЛ с разъёма XW1, либо сигналы, поступившие на разъём XW2 и преобразованные в такие импульсы компаратором DA1, либо сигналы, поступившие на разъём XW3 и прошедшие через делитель частоты микросхемы DD1. Микроконтроллер выполняет основные операции измерения частоты, длительности и счёта импульсов. Он же выводит результаты измерений на ЖКИ HG1 и управляет работой всего прибора. Программа микро-контроллера написана на языке ассемблера MASM, входящего в состав среды разработки программ MPLAB IDEv7.5.

В режимах измерения частоты микроконтроллер подсчитывает импульсы, поступившие на вход T0CKI в течение выбранного пользователем измерительного интервала (0,01, 0,1, 1 или 10 с). При измерении частоты сигнала, поданного на разъём XW3, его частоту предварительно делит на 1000 один из делителей микросхемы DD1.

При измерении длительности импульсов высокого логического уровня микроконтроллер по нарастающему перепаду измеряемого импульса на входе INT начинает счёт импульсов частотой 1 МГц, полученных делением своей тактовой частоты. Он прекращает этот счёт по спадающему перепаду измеряемого импульса. В случае измерения длительности импульса низкого уровня счёт начинается по его спадающему перепаду, а завершается по нарастающему.

Как только включён режим измерения ухода частоты, микроконтроллер выполняет первое измерение частоты входного сигнала, затем периодически повторяет эти измерения. Программа вычитает результат первого измерения из каждого последующего и выводит текущую разность на индикатор. После остановки этого режима на ЖКИ отображаются максимальные зафиксированные завремя измерения отклонения частоты вниз и вверх от начальной.

Для измерения частоты следования логических импульсов с уровнями ТТЛ кнопкой SB2 выбирают входной разъём XW1. Микроконтроллер формирует на выходах RC0-RC2 код 000, переводя этим селектор DD2 в состояние, при котором сигнал с разъёма XW1 поступает на входТОСК1 микроконтроллера для измерения частоты и на его же вход INT для измерения длительности импульсов. Результаты измерений программа выводит на ЖКИ HG1 (рис. 2), причём длительности импульсов высокого (H) и низкого (L) уровней на экране чередуются. Код в правой части верхней строки означает заданное время счёта: «10» — 10 с, «1» — 1 с, «,1» — 0,1 с и «,01» — 0,01 с. В правой части нижней строки выводится условное обозначение выбранного входного разъёма: TTL — XW1, VHF — XW2, UHF — XW3.

Рис. 2. Результаты измерений, выводимые программой на ЖКИ HG1

Измеряя частоту аналоговых сигналов (до 80 МГц), кнопкой SB2 выбирают входXW2. На выходах RC0-RC2 микроконтроллер формирует код 001, переводя мультиплексор DD2 в положение, в котором сигнал с разъёма XW2, преобразованный в прямоугольные импульсы компаратором DA1, поступает на вход TOCKI микроконтроллера. Программа измеряет частоту сигнала и выводит результат на ЖКИ (рис. 3).

Рис. 3. Результаты измерений, выводимые программой на ЖКИ HG1

Для измерения ВЧ-сигналов частотой до 1250 МГц кнопкой SB2 выбирают входной разъём XW3. С него сигнал поступает на вход fIN имеющегося в микросхеме DD1 делителя частоты. Коэффициент деления задан микроконтроллером равным 1000. Сигнал с выхода делителя частоты, преобразованный в импульсы длительностью около 0,5 мкс одновибратором на триггере DD4.1, поступает через мультиплексор DD2 на вход TOCKI микроконтроллера. Мультиплексор установлен в нужное для этого состояние кодом 010 на выходах RC0-RC2 микроконтроллера. Программа микроконтроллера измеряет частоту и с учётом коэффициента деления выводит результат на ЖКИ (рис. 4).

Рис. 4. Результаты измерений, выводимые программой на ЖКИ HG1

Подлежащие счёту импульсы подают на входной разъём XW1 или XW2. Кнопкой SB2 выбирают один из этих входов, а кнопкой SB1 — режим COUNTER (рис. 5). Счёт запускают нажатием на кнопку SB3, что сопровождается заменой на экране метки OFF (выключено) меткой ON (включено). Для остановки счёта на кнопку SB3 нажимают повторно, при этом метку ON сменяет метка OFF. Накопленное за время от запуска до остановки число импульсов программа показывает на ЖКИ.

Рис. 5. Результаты измерений, выводимые программой на ЖКИ HG1

Чтобы измерить уход частоты, сигнал (в зависимости от его формы и частоты) подают на один из входных разъёмов XW1-XW3, выбирают кнопкой SB2 этот разъём, а кнопкой SB1 — функцию «+/-FREQUENCV (её название сопровождается меткой OFF). Измерение запускают нажатием на кнопку SB3, при этом метку OFF сменяет метка ON. Прибор измеряет уход частоты и выводит его текущее значение на ЖКИ (рис. 6). После повторного нажатия на кнопку SB3, останавливающего измерение, на ЖКИ появляются максимальные зафиксированные за время измерения значения ухода частоты вверх и вниз от исходной (рис. 7).

Рис. 6. Результаты измерений, выводимые программой на ЖКИ HG1

Рис. 7. Результаты измерений, выводимые программой на ЖКИ HG1

Для деления частоты аналогового сигнала частотой до 80 МГц кнопкой SB2 выбирают входной разъём XW2 и подают на него сигнал, частота которого подлежит делению. С выхода компаратора DA1 он поступает на вход OSCIN делителя частоты R_Counter микросхемы DD1. Микроконтроллер задаёт по последовательному интерфейсу необходимый коэффициент деления этого делителя и подключает его выход к выходу Fo/LD микросхемы. Нажатиями на кнопку SB1 коэффициент деления уменьшают, а на кнопку SB2 — увеличивают. Чем дольше удерживают кнопку нажатой, тем быстрее изменяется коэффициент.

На выходе RC5 микроконтроллер устанавливает высокий уровень, переключая разъём XW1 в режим выхода. На своих выходах RC0-RC2 микроконтроллер формирует код 000, поэтому сигнал, выведенный на разъём, поступает и на входТ0СКI микроконтроллера для измерения частоты. Длительность импульсов в этом режиме не измеряется.

Рис. 8. Результаты измерений, выводимые программой на ЖКИ HG1

На рис. 8 показан результат деления частоты 19,706 МГц поданного на разъём XW2 сигнала на 100. В этом случае на выходе XW1 с частотой 197,06 кГц следуют импульсы высокого логического уровня длительностью 0,5 мкс. Сигналы частотой от 50 до 1200 МГц подают для деления на разъём XW3. Они обрабатываются аналогично, отличие лишь в том, что в операции участвует более высокочастотный делитель частоты N-Counter микросхемы DD1. На рис. 9 показан результат деления частоты 200,26 МГц на 2000. Частота на выходе — 100,13 кГц.

Рис. 9. Результаты измерений, выводимые программой на ЖКИ HG1

Частотомер смонтирован на печатной плате из фольгированного с двух сторон стеклотекстолита толщиной 1 мм. Её чертёж показан на рис. 10, а размещение элементов — на рис. 11. Постоянные резисторы и большинство конденсаторов имеют типоразмер 0805 для поверхностного монтажа. Подстроечные резисторы R21 и R23 — SH-655MCL, подстроечный конденсатор C13 — TZC3P300A110R00. Оксидные конденсаторы С4 и C6 — алюминиевые с проволочными выводами.

Рис. 10. Печатная плата частотомера

Рис. 11. Размещение элементов на плате

Разъёмы XW1-XW3 — 24_BNC-50-2-20/133_N [7]. Они соединены с платой отрезками коаксиального кабеля с волновым сопротивлением 50 Ом длиной около 100 мм. Кнопки SB1-SB3 — TS-A3PG-130. Индикатор HG1 укреплён над платой на стойках высотой 10 мм винтами М3.

Прибор собран в пластмассовом корпусе Z-28 [8]. На его передней панели вырезано прямоугольное отверстие размерами 70×25 мм для экрана ЖКИ и просверлены три отверстия диаметром 3 мм под кнопки. Сами кнопки установлены на стеклотекстолитовой плате размерами 100x12x1,5 мм, прикреплённой к передней панели с обратной стороны винтами M3. С левой стороны корпуса установлено гнездо питания, а с правой — его выключатель. Входные байонетные разъёмы размещены на задней стенке корпуса.

Налаживание частотомера заключается в следующем:

— установите подстроечным резистором R21 оптимальную контрастность изображения на экране ЖКИ;

— установите подстроечным резистором R23 необходимую яркость подсветки ЖКИ;

— установите подстроечным конденсатором C13 тактовую частоту микроконтроллера в точности равной 4 МГц. Для этого к разъёму XW1 подключите цифровой частотомер (Ч3-63 или любой другой), включите налаживаемый прибор при нажатой кнопке SB3 (при этом на ЖКИ должна появиться надпись «TEST») и, вращая ротор подстроечного конденсатора C13, добейтесь показаний внешнего частотомера, максимально близких к 100000 Гц. Не забывайте, что погрешность установки этой частоты непосредственным образом влияет на погрешность налаживаемого прибора.

Литература

1. Ultrafast, 4 ns Single-Supply Comparators AD8611/AD8612. — URL: http://www.analog. com/media/en/technical-documentation/ data-sheets/AD8611_8612.pdf (02.11.2015).

2. PLLatinum™ LowPower Frequency Synthesizer for RF Personal Communications LMX2306 550 MHz, LMX2316 1.2 GHz, LMX2326 2.8 GHz. — URL: http://www.ti.com/lit/ds/ symlink/lmx2326.pdf (02.11.2015).

3. 74HC74, 74HCT74 Dual D-type flip-flop with set and reset; positive edge-trigger. — URL: http://www.nxp.com/documents/data_sheet/ 74HC_HCT74.pdf (02.11.2015).

4. 74HC151, 74HCT151 8-input multiplexer. — URL: http://www.nxp.com/documents/data_ sheet/74HC_HCT151.pdf (02.11.2015).

5. PIC16F87XA Data Sheet 28/40/44-Pin Enhanced Flash Microcontrollers. — URL: http://akizukidenshi.com/download/PIC16F 87XA.pdf (02.11.2015).

6. Wh2602B character 16×2. — URL: http:// www.winstar.com.tw/download.php?ProID= 22 (17.11.15).

7. Coaxial Cable Connector: 24_BNC-50-2-20/133_N. — URL: http://www.electroncom. ru/pdf/hs/bnc/24bnc50-2-20_133n.pdf (16.11.15).

8. Корпус Z-28. — URL: http://files.rct.ru/ pdf/kradex/z-28.pdf (16.11.15).

Чертёж печатной платы в формате Sprint Layout 5.0 и программу микроконтроллера можно скачать здесь.

Автор: В. Турчанинов, г. Севастополь

Дата публикации: 16.02.2016

Мнения читателей
  • Владимир / 20.01.2017 — 10:55
    Вышли еще две версии частотомера. Третья версия опубликована в журнале «Радиолюбитель» №8,9. Четвертая: https://cloud.mail.ru/public/4EKo/QaTMuiDMv

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


www.radioradar.net

частотомер электронносчетный

 

 как проверить детали     работа с цифровым мультиметром    звуковые генераторы     генератор радиочастоты      цифровой частотомер   осциллограф  измерители емкости и RCL   микрометр

            ЧАСТОТОМЕР ЭЛЕКТРОННОСЧЕТНЫЙ

Одним из самых полезных приборов в радиолюбительской практике является частотомер. При добавлении к нему соответствующих приставок прибором можно измерять практически любые электрические величины (напряжение, ток, сопротивление, емкость, индуктивность…).

На этой страничке хочу предложить вашему вниманию схему простого частотомера на микросхемах 155 серии. Вы спросите «Почему использованы микросхемы устаревшей серии?» — отвечу - эти микросхемы обеспечивают счетчику возможность измерять частоты до 15-20 мегагерц, да и ктому же они очень дешево стоят и не дефицитны…

 

Как видно из структурной схемы — частотомер содержит пять основных блоков. Блок опорных частот состоит из задающего кварцевого генератора и делителей частоты, на выходе получаем опорные частоты в 1 герц, либо в 1 килогерц. Эти частоты служат для получения временных интервалов работы счетчика импульсов. Формирователь — обеспечивает правильный отсчет нужного нам количества импульсов, соответствующий временным опорным частотам. Счетчик, как понятно из названия, служит для подсчета количества и отображения импульсов входной частоты. Усилитель — усиливает слабые входные сигналы до уровня логической единицы. Источник питания — обеспечивает узлы частотомера стабильным питанием. Сама схема частотомера является симбиозом нескольких конструкций, опубликованных в разных радиолюбительских изданиях.

Прибор измеряет частоту в двух диапазонах: НЧ — от 1 герца до 99,999 килогерц, точность измерения — плюс/минус 1 герц, ВЧ — от 1 килогерца до 15 мегагерц, точность измерения — плюс/минус 1 килогерц. Минимальная величина амплитуды измеряемого напряжения — 50 милливольт.

Рассмотрим схему блоков прибора:

 

Входной усилитель собран на двух транзисторах и представляет собой широкополосный двухкаскадный усилитель с полосой частот 1гц-15 мгц. Рисунок печатной платы приводится ниже.

 

Источник питания собран по трансформаторной схеме с линейным стабилизатором на микросхеме.

 

Трансформатор источника должен обеспечивать напряжение на вторичной обмотке — не менее 8 вольт (лучше до 12 вольт — для питания приставок) при токе нагрузки до 1 ампера.

Счетчик в частотомере - пятикаскадный. Собран из пяти идентичных плат. Платы собраны в этажерку, что позволило достичь высокой компактности блока в целом. Индикатор в счетчике - светодиодный семисегментный типа TIL312 импортного производства. Можно в качестве индикатора применить индикаторы других типов с общим анодом. Индикатор крепится на торец платы при помощи клея, после чего распаивается по схеме. Увеличивать количество каскадов счетчика, на мой взгляд, экономически нецелесообразно.

 

Пять блоков счетчика соединяются в этажерку при помощи шпилек с гайками. Для обеспечения зазора между платами применены небольшие втулочки (длина — по месту). После сборки блока счетчика, платы соединяются между собой при помощи отрезков луженого провода.

 

 

Блок опорных частот содержит кварцевый генератор с частотой 1 мегагерц и линейку делителей частот.

 

Рисунок печатной платы приведен ниже.

 

Схема платы формирователя приведена ниже.

 

И рисунок его печатной платы

 

После сборки платы соединяются между собой согласно структурной схемы.

Правильно собранный из исправных деталей частотомер в налаживании не нуждается.  Чертежи печатных плат в формате Layout4.0 можно найти здесь.

 

radiocon-net.narod.ru

Частотомер — цифровая шкала с динамической индикацией — Измерительная техника — Инструменты

Для простейшего варианта устройства с верхней границей рабочих частот в 30 Мгц., принципиальная схема ЧМ/ЦШ состоит из базового модуля, с подключенным к его счетному входу входным формирователем.

Схема частотомера — цифровой шкалы приведена на рисунке:

Работа устройства в режиме частотомера


При включении питания, устройство автоматически переходит в тот режим, в котором оно работало ранее (до последнего выключения питания).
Если это был режим частотомера, то в крайнем левом разряде индикатора высветится признак режима частотомера «F.».
В младшем разряде индикатора высветится «0», а остальные разряды будут погашены.
Частотомер автоматически перейдет в режим измерения частоты с временем измерения
1 сек. (по умолчанию) и после этого, будет находиться в режиме ожидания.
При подаче на вход частотомера сигнала с измеряемой частотой, признак режима частотомера «F.» гасится (при этом 8-й разряд включается в работу по отображению значения измеряемой частоты), и индикатор отобразит значение измеряемой частоты в килогерцах (относительно десятичной точки).
При этом будет отображаться только полезная информация, а разряды, которые ее не содержат, будут погашены.
Если на момент включения питания, на входе частотомера присутствует измеряемый сигнал, то, после включения питания, признак работы частотомера «F.», высветится в течение 1-й секунды, а затем погаснет.
Для того чтобы перейти на время измерения 0,1 сек. или 10 сек., необходимо нажать либо кнопку № 1, либо одновременно нажать кнопку № 1 и кнопку № 2 соответственно (см. раскладку клавиатуры для режима частотомера), затем дождаться изменения положения десятичной точки, после чего отпустить кнопку (кнопки).
Если после этого необходимо вернуться к времени измерения 1 сек., то необходимо нажать кнопку № 2 и дождаться изменения положения десятичной точки, после чего отпустить кнопку.
Для любого времени измерения десятичная точка отмечает килогерцы.
Если перед выключением питания происходила работа в режиме частотомера, то при следующем включении питания установится этот же режим, а время измерения установится по умолчанию (1 сек.).

Раскладка клавиатуры режима частотомера

Работа устройства в режиме цифровой шкалы
Если перед выключением питания происходила работа в режиме цифровой шкалы, то при следующем включении питания будет установлен именно этот режим, а внутри режима цифровой шкалы будет установлен именно тот подрежим («минус ПЧ» или «плюс ПЧ»), в котором происходила работа до последнего выключения питания.
Признаки подрежимов цифровой шкалы («L.» или «H.» соответственно) будут постоянно высвечиваться в левом (старшем) разряде индикатора.
При отсутствии сигнала на входе цифровой шкалы (частотомер и цифровая шкала имеют общий вход), индикатор будет показывать значение записанной в энергонезависимую память PIC контроллера промежуточной частоты, а при его наличии — результат вычитания или сложения частоты сигнала, присутствующего на входе цифровой шкалы, и значения промежуточной частоты, записанной в энергонезависимую память PIC контроллера.
Так же, как и в режиме частотомера, в этих подрежимах режима цифровой шкалы, разряды индикатора, не содержащие полезной информации, будут погашены.
В режиме цифровой шкалы, время измерения (подсчета импульсов) составляет 0,1 сек. (погрешность измерения 10 Гц.) и изменить его нельзя.
При использовании времени измерения 0,1 сек. (это относится также и к работе в режиме частотомера с временем измерения 0,1 сек.), для облегчения визуального восприятия показаний прибора, негативный эффект мерцаний показаний индикатора ослабляется.
Режим цифровой шкалы имеет 4 подрежима (см. раскладку клавиатуры режима цифровой шкалы).
При нажатии на кнопку № 1 происходит переход в подрежим «минус ПЧ».
При этом, в левом разряде индикатора, высветится признак подрежима «L.».
При нажатии на кнопку № 2 происходит переход в подрежим «плюс ПЧ».
При этом, в левом разряде индикатора, высветится признак подрежима «H.».
В процессе «прошивки» PIC контроллера, в его энергонезависимую память записывается значение промежуточной частоты = 5,5 мГц., но впоследствии, пользователь может самостоятельно записать в нее любое значение частоты (в пределах рабочего диапазона частот) и использовать ее в качестве промежуточной.
Для выполнения этой процедуры необходимо подать на вход цифровой шкалы внешний сигнал (например, от генератора стандартных сигналов) с частотой, которая далее будет использоваться в качестве промежуточной.
Проконтролировать значение этой частоты можно, перейдя в режим частотомера (переходы между режимами будут описаны ниже).
Убедившись в том, что на вход устройства поступает сигнал с требуемой частотой, необходимо перейти в режим цифровой шкалы, затем одновременно нажать кнопку № 1 и кнопку № 2 и держать их в нажатом состоянии до тех пор, пока все разряды индикатора не окажутся погашенными.
После этого кнопки нужно отпустить.
В индикаторе высветится значение будущей промежуточной частоты, заложенное в оперативную память при помощи одномоментной записи.
По этой причине, значение будущей промежуточной частоты в разрядах индикатора фиксируется (не меняется), и можно не спеша сравнить его с тем значением частоты, которое требуется записать в энергонезависимую память в качестве промежуточной.
Примечание: так как процедура записи значения промежуточной частоты, в энергонезависимую память PIC контроллера, будет использоваться достаточно редко, я не стал перегружать программу командами процедуры гашения незначащих нулей в разрядах оперативной памяти, и поэтому, при индикации содержимого оперативной памяти будут высвечиваться все разряды индикатора (незначащие нули не гасятся).
Если значение содержимого оперативной памяти (будущая ПЧ) Вас устраивает, то можно записать его в энергонезависимую память PIC контроллера.
Для этого еще раз нажимаются обе кнопки.
Их необходимо держать в нажатом состоянии до появления признака окончания записи в энергонезависимую память («F» в младшем разряде индикатора), а затем отпустить.
В зависимости от того, какая кнопка была отпущена последней, в старшем разряде индикатора высветится признак подрежима цифровой шкалы «L.» или «H.», незначащие разряды будут погашены, а в остальных разрядах будет индицироваться результат вычитания или сложения установленной промежуточной частоты и измеряемой частоты.
Если установившийся подрежим не тот, который нужен, ничто не мешает переключиться на другой подрежим.
Остается только подключить вход цифровой шкалы к выходу гетеродина или синтезатора частот.
Если значение будущей промежуточной частоты Вас не устраивает (неточное значение), то необходимо завершить процедуру записи этого значения промежуточной частоты в энергонезависимую память (иначе нельзя будет переключиться в режим частотомера).
После появления признаков подрежимов «L.» или «H.», необходимо перейти в режим частотомера, скорректировать в этом режиме значение будущей промежуточной частоты, вернуться в режим цифровой шкалы и повторить процедуру записи значения промежуточной частоты в энергонезависимую память PIC контроллера (см. выше).
Количество такого рода манипуляций не ограничено.

Раскладка клавиатуры режима цифровой шкалы

Переключение режимов «частотомер» — «цифровая шкала»

Режимы работы переключаются кнопкой № 1.
При смене режима работы, меняется раскладка клавиатуры (см. выше).
Если кнопка № 1 находится в нажатом состоянии меньше определенного времени, то переключения в другой режим не происходит и кнопка № 1 может либо устанавливать время измерения 0,1 сек. (в режиме частотомера), либо включать подрежим «минус ПЧ» (в режиме цифровой шкалы).
Если этот порог превышен, происходит переключение в другой режим.
Величина этого порога — около 4 сек., и этот интервал времени отсчитывается с момента окончания цикла счета, приходящегося на момент нажатия кнопки № 1.
Следовательно, пока этот цикл счета не закончится, отсчет 4-х секундного интервала времени производиться не будет.
Таким образом, быстрее всего переключение режимов будет производиться при установке времени измерения 0,1 сек.
Так как в режиме цифровой шкалы используется только это время измерения, то переход из режима цифровой шкалы в режим частотомера или переход из режима частотомера (установлено время измерения 0,1 сек.) в режим цифровой шкалы займет не более 4,1 сек..
При установке других пределов измерения, время перехода из режима частотомера к режиму цифровой шкалы займет:
если установлено время измерения 1 сек. — не более 5 сек.,
если установлено время измерения 10 сек., — не более 14 сек.,
Если время измерения составляет 10 сек., то в худшем случае придется подождать 14 сек., а в лучшем случае — 4 сек. Это будет зависеть от того, на какой момент времени, внутри текущего цикла измерения, приходится момент замыкания контактов кнопки № 1.
На практике процесс переключения режимов работы выглядит так:
Если необходимо перейти в другой режим работы, кнопка № 1 нажимается и удерживается до тех пор, пока не произойдет смена режима работы, после чего отпускается.
Определение факта переключения производится по признакам режимов.
Примечание: если после включения питания установился ранее запрограммированный режим частотомера и первой операцией, после включения питания, является переход в режим цифровой шкалы, то переход осуществлен не будет до тех пор, пока не будет произведена одна (любая) операция с клавиатурой (кнопками).
Это означает то, что, в этом случае, необходимо кратковременно нажать и отжать любую из кнопок и только после этого переходить в режим цифровой шкалы.
Если этого не знать, то переход произойдет только после второго нажатия кнопки № 1, а в течение первого нажатия просто ничего происходить не будет и можно напрасно прождать.
После перехода в режим цифровой шкалы по двойному нажатию, дальнейшие переходы между режимами, вплоть до выключения питания, происходят в одно нажатие.
Если после включения питания установился ранее запрограммированный режим цифровой шкалы, все переходы между режимами (и во всех случаях) происходят в одно нажатие.
Таким образом, переход между режимами по двойному нажатию происходит только в единственном случае (см. выше) и не более чем 1 раз за одно включение питания.

Схема входного формирователя частотомера — цифровой шкалы приведена на рисунке:

Дополнительные замечания по схеме
Снизить энергопотребление можно, увеличив номиналы резисторов, соединяющих выводы порта В с индикатором.
В моем частотомере они имеют номинал 1 ком, и яркость свечения индикаторов меня устраивает (это, конечно, мое субъективное мнение, у кого-то оно может быть другим).
Что касается индикатора, то указанный в схеме А.Денисова индикатор АЛС318 применять вряд ли стоит: размер цифр маленький и вообще ему место в музее.
Я использовал 9-разрядный светодиодный индикатор от телефонного аппарата с АОН, с общим катодом и красным цветом свечения, что и другим советую.
В моем частотомере, кроме питания от сети, имеется также и батарейное питание (аккумуляторы НМГ емкостью 1А/ч).

Печатная плата устройства приведена на рисунке:

Фотографии собранного Устройства (любезно предоставил vanchellos):

 





 

Прошивки для микроконтроллера PIC16F84A  Скачать

Прошивки для микроконтроллера PIC16F628A Скачать

 

Печатная плата формата .lay                         Скачать

 

Это варианты «на все случаи жизни».
При отсутствии сигнала, должен индицироваться 0.
Пример: Вы собрали ЧМ/ЦШ с «прошивкой» Kea3b.hex, и при отсутствии сигнала, индицируется число 255, а не 0.
Действие: меняете «прошивку» Kea3b.hex на Kea3b_1.hex.
Еще один пример: Вы собрали ЧМ/ЦШ с «прошивкой» Kea3b_1.hex, и при отсутствии сигнала, индицируется число 1, а не 0.
Действие: меняете «прошивку» Kea3b_1.hex на Kea3b.hex.
То же самое относится и к программам Kea628a.hex и Kea628a1.hex.

Автор конструкции: Корабельников Евгений Александрович
Город: Липецк
Связаться с автором можно по email (указан на схеме)
Сайт автора: http://ikarab.narod.ru Самоучитель по программированию PIC микроконтроллеров для начинающих

cxema.my1.ru

Цифровой частотомер. 8-разрядов. от Viktor2312. 1996г.

1. Частотомер электронно-счётный.

(ИП — 1 — 001).


Электронно-счётный частотомер имеет следующие параметры:

Измеряемая частота —————————- (1Гц…20МГц).
Погрешность измерений ——————————- (+-3Гц).
Амплитуда измеряемых импульсов ——————- (0,1…5В).

Частотомер содержит пять основных блоков, а так же блок питания БП-1:

1. Генератор на 1МГц и делители до 1Гц —————————- (G1).
2. Блок управления сбросом и записью в память ——————— (G2).
3. Блок счёта и памяти ——————————————— (G3).
4. Блок динамической индикации ———————————— (G4).
5. Входной блок. Он предназначен для усиления входных периодических сигналов любой формы и преобразования их в прямоугольные импульсы. — (G5).

Генератор на 1МГц и делители до 1Гц (G1).


Блок (G1), (ИП — 1 — 001 — 02) состоит из задающего генератора выполненого на элементах DD1.1 — DD1.4 и элементах Z1 (1МГц), R1 — R3, C1-C3. Конденсатор С2 предназначен для точной настройки частоты генератора. Элементы DD2 — DD7 образуют делитель частоты. Выходные импульсы делителя с периодом 1с задают режим работы блока управления (G2).Блок счёта и памяти (G3).

(ИП — 1 — 001 — 03).


Блок (G3) конструктивно оформлен на двух печатных платах (ИП — 1 — 001 — 03.1) и (ИП — 1 — 001 — 03.2). Он содержит 8 (восемь) микросхем К155ИЕ2 DD12 — DD19 декадные счётчики включённые последовательно. А так же 8 (восемь) микросхем памяти К155ТМ5 имеющие общий объём памяти 4 байта по 4 бита каждая. Они предназначены для хранения информации во время счёта.Блок управления сбросом и записью в память (G2).

(ИП — 1 — 001 — 04)


Считаем, что переключатель SA1 находится в положении «Измерение» и следовательно его контакты 1 и 2 разомкнуты. На вход «С» D-триггера DD10.1 (G2), работающего в режиме счёта на выв. 2 (инверсный вход соединён с входом D), непрерывно поступают импульсы от блока образцовых частот (G1), (ИП — 1 — 001 — 02), (см график а на рис.). В начальный момент на его прямом выходе (вывод 5) напряжение низкого уровня, закрывающее электронный клапан DD9.1 (G2), который не пропускает через себя сформированное триггером Шмитта импульсное напряжение. По фронту первого же импульса образцовой частоты, триггер DD10.1 переключается в единичное состояние (график б) и напряжением высокого уровня на прямом выходе открывает электронный клапан. С этого момента импульсы напряжения измеряемой частоты безпрепятственно проходят через клапан, инвертор DD9.2, (G2) и поступают непосредственно на вход С1 (выв. 14) счётчика DD12 (G3) младшего разряда блока счёта и памяти (G3). Начинается счёт входных импульсов, (график Ж).
По фронту следующего импульса образцовой частоты триггер DD10.1 переключается в исходное, нулевое состояние и напряжением высокого уровня на инверсном выходе переключает в единичное состояние D-триггер DD10.2 (график в). В свою очередь, этот триггер низким уровнем напряжения на инверсном выходе (выв. 8), а значит и на соединённым с ним входе R триггера DD10.1 блокирует вход управляющего устройства от воздействия на него импульсов образцовой частоты. При этом клапан закрывается напряжением низкого уровня на прямом выходе триггера DD10.1. В этот момент при смене уровня напряжения с низкого на высокий на выв. 9 DD10.2 одновибратор DD11.1 формирует на выводе 13 короткий импульс, который записывает данные со счётчиков в память.
Импульс низкого уровня с коллектора VT2 так же поступает на вывод 13, вывод R, D-триггера DD10.2 и переключает триггер в исходное состояние и конденсатор С5 разряжается через диод VD2 (Д9Ж) и внутреннее сопротивление этого триггера. С появлением на входе «С» триггера DD10.1 очередного импульса образцовой частоты начинается следующий цикл работы прибора в режиме измерения (график ж).

Чтобы частотомер перевести на работу в режиме непрерывного счёта импульсов, переключатель SA1 устанавливают в положение «Счёт». В этом случае триггер DD10.1 по входу S переключается в единичное состояние — на его прямом выходе появляется напряжение высокого уровня. При этом электронный клапан оказывается открытым и через него к двоично-десятичному счётчику DD12 — DD19 (G3) поступают импульсы входного сигнала. Для того, чтобы информация проходила напрямую с выходов счётчиков на вход индикатора, необходимо, чтобы на выводах 12 и 3 микросхем памяти DD20 — DD27 (G3) присутствовало напряжение высокого уровня. В режиме счёта одновибратор не работает, так как на выводе 2 нет перепадов импульса с лог. 0 в лог. 1 и на выводе 13 постоянно присутствует уровень лог. 0, а на инверсном выходе выв.4 уровень лог.1. Вторая часть переключателя SA1, SA1.2 подключена к выводам 13 и 4 одновибратора DD11.1 (G2) и при переключении с режима «Измерение» в режим «Счёт» с вывода 4 DD11.1 (G2) напряжение лог. 1 подаётся на входы (WR) выв 12 и 3 микросхем памяти, что и позволяет пропускать информацию насквозь памяти, не запоминая информации.
Блок (G2) выполнен на одной плате с блоком (G5) и имеет маркировку (ИП — 1 — 001 — 04).

Входной блок (G5).

(ИП — 1 — 001 — 04)


Блок (G5) выполнен на одной плате с блоком (G2). Входной блок частотомера состоит из усилителя на транзисторе VT1 (КТ315В) и триггера Шмитта микросхемы DD8.1 (G5) К155ТЛ1. В этой микросхеме два триггера Шмитта, каждый из которых может работать как самостоятельное устройство, но в частотомере используется только один из них (любой).
Транзистор VT1 усиливает и одновременно ограничивает по амплитуде входные колебания, а триггер Шмитта DD8.1 преобразует их в электрические импульсы прямоугольной формы. С выхода триггера (вывод 6 DD8.1) импульсное напряжение поступает на вход электронного клапана (вывод 1 DD9.1) (G2).
Диод VD1 ограничивает отрицательное напряжение на эмиттерном переходе транзистора. Пока напряжение входного сигнала не превышает 0,6…0,7В, диод практически закрыт и не оказывает никакого влияния на работу транзистора как усилителя. Когда же амплитуда измеряемого сигнала оказывается больше, диод при отрицательных полупериодах открывается и таким образом поддерживает на базе напряжение, не более 0,7…0,8В.

Блок динамической индикации. (G4).

Блок динамической индикации построен на 8 (восьми) микросхемах. Семь микросхем К155 серии и одна К514 серии, семисегментный дешифратор. Микросхема DD35 (К155ЛА3) содержит четыре элемента И-НЕ, на которой построен генератор с частотой следования импульсов 1…12кГц. Импульсы с генератора подаются на счётчик DD34 (К155ИЕ2) с коэффициентом пересчёта 5 (пять). Сигналы с выхода счётчика подаются на управляющие входы мультиплексоров DD28 — DD31 (К155КП7) и на дешифратор DD32 (К155ИД4). Выходы дешифратора подключены к катодам индикаторов (выв. 4) HG1 — HG8. Счёт катодов идёт от младшего (правого знака) на схеме первый верхний HG1. В качестве индикаторов использованы семисегментные светодиодные индикаторы с общим катодом АЛС324А. Сигналы с выходов мультиплексоров DD28 — DD31 подаются на входы 1-2-4-8 дешифратора DD33 (К514ИД1). Сигналы с выхода дешифратора DD33 управляют анодами (a…g) индикаторов HG1 — HG8. В результате на индикаторах отображаются (в оригинале индицируются) цифры, соответствующие подаваемым на вход катодам.
Так же следует заметить, что дешифратор DD33 (К514ИД1) выполнен в 16 выводном корпусе, а КР514ИД1 в 14 выводном корпусе, и имеет соответсвенно другую разводку выводов (на схеме показано в скобках).

Вот это всё что нашлось у меня в моих старых записях.

Графики работы в приложенном архиве.

vb4.zx-pk.ru