Схема электронной нагрузки с плавной регулировкой тока – Простая аналоговая электронная нагрузка » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)

Содержание

Электронная нагрузка с наворотами. — Регуляторы мощности — Источники питания

Понадобилось мне нагрузить  импульсный источник питания, а нечем,полазил по своим закромам, нашел нихром ну и всякую ерунду в виде древних сапротов….Попробовал нагрузить источник как то не гибко получается  и решился спаять электронную нагрузку как говорится на века… Схем в интернете оказалось много от простых ну и по сложнее ..В итоге небольших мучений родилось сие чудо …В ходе первых испытаний оказалось что греется радиатор  и весьма существенно.. И тут пришла идея применить ранее мною изготовленное  Устройство контроля температурного режима, управления охлаждением и термо защиты на PIC12F629 …когда то делал для лабораторника  … Схема есть на нашем сайте… И все заработало завертелось…

Схема нагрузки.

Для повышения стабильности работы регулирующей микросхемы LM358 ,необходимо соеденитьмежду собой выводы микросхемы 6 и 7 ,а вывод 5 соединить с землей…

Схема контроля температуры.

При включении питания — кратковременно включается вентилятор и проверяется его исправность (по сигналу датчика тахогенератора), если вентилятор исправен и температура в норме — включается реле, подавая питание на контролируемое устройство. По мере прогрева нагрузки (около 50 градусов) — включается вентилятор, а если температура упала ниже 45 градусов — кулер выключается. Т.е. имеется гистерезис в 5 градусов. Когда температура достигнет 75 градусов — срабатывает термозащита, нагрузка отключается, а если зафиксирована неисправность вентилятора — то термозащита срабатывает уже при 60 градусах. Если сработала термозащита — то обратного включения нагрузки не происходит, как бы оно не остыло. Кулер же будет продолжать работать в штатном режиме, т.е. будет охлаждать радиаторы и выключится, когда температура упадет ниже +45 градусов. Для сброса термозащиты требуется отключить и снова включить питание контроллера.

Ну фотки …

Индикатор использовал покупной  до 10 ампер …События показали что индикатор нужен до 20 ампер…

Корпус взят от старого компового блока питания ..

Транс питания схемы от китайского древнего мафона  ,радиатор с кулером от пенька четвертого если не ошибаюсь…

Ну и куча кирпичей в виде сапротов нагрузки…

При работе нагрузки в 18 ампер нагрев деталей был в  рабочих температурах…Замерял  мультиметром и электроным термометром…

Показания приборов у всех разное одним словом китай…На нагрузке показания амперметра более точные по сравнении с блоком питания проверял мультиметром…

 Возникнут вопросы отвечу …Остальное все в архиве… Все схемы взяты из интернета на авторство не претендую,схемы перерабатывал под свои нужды….

АРХИВ:Скачать

cxema.my1.ru

cxema.org — Токовая электронная нагрузка

Токовая электронная нагрузка


Расскажу о полезном для радиолюбителей устройстве – о токовой электронной нагрузке с возможностью измерения емкости аккумуляторов. Зачем нужен этот прибор?


Все сталкивались с ситуацией, когда надо выяснить параметры какого-нибудь источника питания, например, лабораторного БП, драйвера светодиодов или зарядноо устройства. Ведь практика показывает, что производители не всегда указывают верные параметры. Конечно, есть самый простой вариант — нагрузить резистором, рассчитанным по закону Ома, и измерить ток с помощью мультиметра. Но для каждого случая надо делать свои расчеты и не всегда можно найти мощный резистор нужного номинала, они довольно дороги. Целесообразнее использовать электронную или активную нагрузку, позволяющую нагрузить любой БП или аккумулятор, и регулировать ток нагрузки обычным потенциометром.


А за счет включения в схему многофункционального цифрового ваттметра, показывающего емкость, этот нагрузочный стенд может разрядить аккумулятор и показать его реальную мощность. Кстати, в отличие от IMAX 6 наша система может разряжать аккумуляторы с током до 40А. Это удобно для автомобильных аккумуляторов.


        Схема построена на сдвоенном операционном усилителе (ОУ) LM358, хотя задействован только 1 элемент.


Датчиком тока является мощный резистор R12, желательно на 40Вт, хотя я поставил на 20Вт. Можно соединить параллельно несколько резисторов для получения нужной мощности так, чтобы итоговое сопротивление было равно 0.1 Ом. R10 и R11 (0.22 Ом/ 10Вт) — токовыравнивающие элементы для силовых ключей.У меня реально стоят параллельно 2 х 0.47 Ом / 5Вт для каждого транзистора.


ОУ управляет двумя составными транзисторами КТ827, установленными на отдельные радиаторы. Транзисторы оптимальны для этой схемы, хотя и довольно дорогие.


Принцип работы.


        При подключении тестируемого устройства образуется падение напряжения на мощном токовом резисторе R12, соответственно меняется напряжение на входах ОУ, следовательно, и на его выходе. В итоге, сигнал поступающий на транзисторы зависит от падения напряжения на шунте. Изменится ток протекающий по транзисторам.


Потенциометром изменяем напряжение на неинвертирующем входе ОУ и также как описано выше изменяется ток через по транзисторы. Данные транзисторы позволяют работать с токами до 40А, но требуют хорошего охлаждения, т.к. они работают в линейном режиме. Поэтому, кроме массивных радиаторов я поставил вентилятор, с регулировкой оборотов, который можно включить отдельной кнопкой. Схема регулятора оборотов собрана на небольшой плате.


        Теоретически максимальное входное напряжение может быть до 100В – транзисторы выдержат, но китайский ваттметр рассчитан только до 60В.


        Кнопка S1 изменяет чувствительность ОУ, т.е. переключает на малые токи для точного измерения тестируемых маломощных источников.


        Важные особенности данной схемы:


  1. наличие обратной связи для обоих транзисторов,

  2. возможность изменения чувствительности ОУ.

  3. грубая и тонкая регулировка тока (R5 и R6).


 


       Трансформатор в схеме питает только ОУ и блок индикаторов, подойдет любой с током от 400мА и напряжением 15-20В, все равно напряжение потом стабилизируется до 12В линейным стабилизатором 7812. Его нет необходимости ставить на радиатор.


       Собрал все в корпус от лабораторного БП  PS 1502  за пару дней, с учетом разработки и травления платы.


         Минусом этой схемы является отсутствие защиты от переполюсовки питания, но ее можно доработать. Также в дальнейшем добавлю токовую защиту, а пока стоит только предохранитель. При желании увеличить общий ток можно добавить еще пару транзисторов КТ827.


 


{youtube}wZtwQ7OTM8A{/youtube}


 

  • < Назад
  • Вперёд >

vip-cxema.org

схема. Самодельная электронная нагрузка на полевом транзисторе

cxema.org — Токовая электронная нагрузка

Токовая электронная нагрузка

Расскажу о полезном для радиолюбителей устройстве – о токовой электронной нагрузке с возможностью измерения емкости аккумуляторов. Зачем нужен этот прибор?

Все сталкивались с ситуацией, когда надо выяснить параметры какого-нибудь источника питания, например, лабораторного БП, драйвера светодиодов или зарядноо устройства. Ведь практика показывает, что производители не всегда указывают верные параметры. Конечно, есть самый простой вариант — нагрузить резистором, рассчитанным по закону Ома, и измерить ток с помощью мультиметра. Но для каждого случая надо делать свои расчеты и не всегда можно найти мощный резистор нужного номинала, они довольно дороги. Целесообразнее использовать электронную или активную нагрузку, позволяющую нагрузить любой БП или аккумулятор, и регулировать ток нагрузки обычным потенциометром.

А за счет включения в схему многофункционального цифрового ваттметра, показывающего емкость, этот нагрузочный стенд может разрядить аккумулятор и показать его реальную мощность. Кстати, в отличие от IMAX 6 наша система может разряжать аккумуляторы с током до 40А. Это удобно для автомобильных аккумуляторов.

        Схема построена на сдвоенном операционном усилителе (ОУ) LM358, хотя задействован только 1 элемент.

Датчиком тока является мощный резистор R12, желательно на 40Вт, хотя я поставил на 20Вт. Можно соединить параллельно несколько резисторов для получения нужной мощности так, чтобы итоговое сопротивление было равно 0.1 Ом. R10 и R11 (0.22 Ом/ 10Вт) — токовыравнивающие элементы для силовых ключей.У меня реально стоят параллельно 2 х 0.47 Ом / 5Вт для каждого транзистора.

ОУ управляет двумя составными транзисторами КТ827, установленными на отдельные радиаторы. Транзисторы оптимальны для этой схемы, хотя и довольно дорогие.

Принцип работы.

        При подключении тестируемого устройства образуется падение напряжения на мощном токовом резисторе R12, соответственно меняется напряжение на входах ОУ, следовательно, и на его выходе. В итоге, сигнал поступающий на транзисторы зависит от падения напряжения на шунте. Изменится ток протекающий по транзисторам.

Потенциометром изменяем напряжение на неинвертирующем входе ОУ и также как описано выше изменяется ток через по транзисторы. Данные транзисторы позволяют работать с токами до 40А, но требуют хорошего охлаждения, т.к. они работают в линейном режиме. Поэтому, кроме массивных радиаторов я поставил вентилятор, с регулировкой оборотов, который можно включить отдельной кнопкой. Схема регулятора оборотов собрана на небольшой плате.

        Теоретически максимальное входное напряжение может быть до 100В – транзисторы выдержат, но китайский ваттметр рассчитан только до 60В.

        Кнопка S1 изменяет чувствительность ОУ, т.е. переключает на малые токи для точного измерения тестируемых маломощных источников.

        Важные особенности данной схемы:

  1. наличие обратной связи для обоих транзисторов,
  2. возможность изменения чувствительности ОУ.
  3. грубая и тонкая регулировка тока (R5 и R6).

 

       Трансформатор в схеме питает только ОУ и блок индикаторов, подойдет любой с током от 400мА и напряжением 15-20В, все равно напряжение потом стабилизируется до 12В линейным стабилизатором 7812. Его нет необходимости ставить на радиатор.

       Собрал все в корпус от лабораторного БП  PS 1502  за пару дней, с учетом разработки и травления платы.

         Минусом этой схемы является отсутствие защиты от переполюсовки питания, но ее можно доработать. Также в дальнейшем добавлю токовую защиту, а пока стоит только предохранитель. При желании увеличить общий ток можно добавить еще пару транзисторов КТ827.

 

 

  • < Назад
  • Вперёд >

vip-cxema.org

ЭЛЕКТРОННАЯ НАГРУЗКА С РЕГУЛИРОВКОЙ ТОКА

Для чего нужно такое устройство, как электронная нагрузка, наверное все в курсе — она позволяет создать имитацию очень мощного резистора на выходе блоков питания, зарядок, усилителей, ИБП и других схем при их настройке. Данная электронная нагрузка может выдержать более 100 Ампер тока, рассеивая более 500 Вт непрерывно и выдерживая 1 кВт мощности в импульсном режиме.

Схема самодельной электронной нагрузки на 500 Вт

Схема в принципе несложная и тут используются два полевых транзистора с регулирующими ОУ. Каждый из двух каналов одинаков и включены они параллельно. Управляющие напряжения связаны между собой и нагрузка делится поровну между двумя мощными полевыми транзисторами. Здесь использованы для шунта 2 резистора на 50 А, формируя напряжение обратной связи 75 мВ. Очевидным преимуществом в выборе такого малого значения сопротивления (каждый шунт сопротивлением всего 1,5 миллиом) в том, что падение напряжения практически ничтожно. Даже при работе с нагрузкой 100 А, падение напряжения на каждом шунтирующем резисторе будет менее 0,1 В.

Недостатком использования такой схемы в том, что требуется ставить ОУ с очень низким входным смещением, так как даже небольшое изменение смещения может привести к большой погрешности в контролируемом токе. Например, при лабораторных испытаниях, всего 100 мкВ напряжения смещения приведет к изменению тока нагрузки на 0,1 А. Кроме того, трудно создать такие стабильные управляющие напряжения без использования ЦАП и прецизионных ОУ. Если вы планируете использовать микроконтроллер для управления нагрузкой, нужно будет либо использовать прецизионные ОУ для усиления напряжения с шунта, совместимые с ЦАП на выходе (например, 0-5 В) или использовать прецизионный делитель напряжения для создания управляющего сигнала.

Вся схема была собрана на куске текстолита методом упрощённого монтажа и размещена на верхней части большого алюминиевого блока. Поверхность металла отполирована для того, чтобы обеспечить хорошу

xn—-7sbeb3bupph.xn--p1ai

ЭЛЕКТРОННАЯ НАГРУЗКА

   Регулируемая по мощности нагрузка является частью испытательного оборудования, необходимого при налаживании различных электронных проектов. Например, при построении лабораторного источника питания, оно может «симулировать» подключенный потребитель тока, чтобы увидеть, насколько хорошо ваша схема работает не только на холостом ходу, но и на нагрузку. Добавление силовых резисторов для выхода можно делать только в крайнем случае, но не у каждого они есть да и долго их не продержать — сильно греются. В этой статье будет показано, как можно построить блок регулируемой электронной нагрузки с помощью недорогих компонентов, доступных для радиолюбителей.

Схема электронной нагрузки на транзисторах

   В этой конструкции максимальный ток должен быть примерно 7 ампер и он ограничен 5W резистором, который был использован, и относительно слабым полевым транзистором. Ещё большие нагрузочные токи могут быть достигнуты с помощью резистора на 10 или 20 Вт. Входное напряжение, не должно превышать 60 вольт (максимум на эти полевые транзисторы). Основой служит ОУ LM324 и 4 полевых транзистора.

   Два «запасных» операционных усилителя микросхемы LM324 используются для защиты и управления вентилятором охлаждения. U2C образует простой компаратор между напряжением, установленным термистором и делителем напряжения R5, R6. Гистерезис контролируется положительной обратной связью, полученной R4. Термистор помещается в непосредственный контакт с транзисторами на радиаторах и его сопротивление уменьшается с ростом температуры. Когда температура превышает установленный порог, выход U2C будет высокий. Вы можете заменить R5 и R6 с регулируемым переменником и вручную подбирать порог срабатывания. При настройке убедитесь, что защита срабатывает, когда температура транзисторов MOSFET чуть ниже предельно-допустимой, указанной в даташите. Светодиод D2 сигнализирует, когда активируется функция защиты от перегрузки — он установлен на передней панели.

   В элементе U2B операционного усилителя также есть гистерезис компаратора напряжений и используется он для управления вентилятором 12 В (можно использовать от старых PC). Диод 1N4001 защищает MOSFET BS170 от индуктивный бросков напряжения. Нижний температурный порог для активации вентилятора, контролируется резистором RV2.

Сборка устройства

   Была использована для корпуса старая алюминиевая коробка от коммутатора с большим количеством внутреннего пространства для компонентов. В электронной нагрузке использовал старые AC/DC адаптеры для питания 12 В для главной цепи и 9 В для приборной панели — она имеет цифровой амперметр, чтоб сразу видеть ток потребления. Мощность вы уже рассчитаете и сами по известной формуле.

   Вот фотография тестовой установки. Лабораторный блок питания настроен на 5 В. Нагрузку показывает 0.49A. Так же подключен мультиметр на нагрузке, так что ток нагрузки и напряжение контролируются одновременно. Вы сами можете убедится в чёткой работе всего модуля.


el-shema.ru

Электронная импульсная нагрузка на базе TL494

Все электронщики, занимающиеся конструированием устройств электропитания, рано или поздно сталкиваются с проблемой отсутствия нагрузочного эквивалента или функциональной ограниченностью имеющихся нагрузок, а так же их габаритами. К счастью, появление на российском рынке дешевых и мощных полевых транзисторов несколько исправило ситуацию.

Стали появляться любительские конструкции электронных нагрузок на базе полевых транзисторов, более пригодных к использованию в качестве электронного сопротивления, нежели их биполярные собратья: лучшая температурная стабильность, практически нулевое сопротивление канала в открытом состоянии, малые токи управления — основные преимущества, определяющие предпочтительность их использования в качестве регулирующего компонента в мощных устройствах. Более того, самые разнообразные предложения появились от производителей приборов, прайсы которых пестрят самыми разнообразными моделями электронных нагрузок. Но, так как производители ориентируют свою весьма сложную и многофункциональную продукцию под названием «электронная нагрузка» в основном на производство, цены на эти изделия настолько высоки, что покупку может позволить себе лишь весьма состоятельный человек. Правда, не не совсем понятно, — зачем состоятельному человеку электронная нагрузка.

ЭН промышленного изготовления, ориентированного на любительский инженерный сектор, мною замечено не было. Значит, опять придется все делать самому. Э-эх… Начнем.

Преимущества электронного эквивалента нагрузки

Чем же в принципе электронные нагрузочные эквиваленты предпочтительнее традиционных средств (мощные резисторы, лампы накаливания, термонагреватели и прочие приспособления), используемых зачастую конструкторами при наладке различных силовых устройств?

Граждане портала, имеющие отношение к конструированию и ремонту блоков питания, несомненно знают ответ на этот вопрос. Лично я вижу два фактора, достаточных для того, что бы иметь в своей «лаборатории» электронную нагрузку: небольшие габариты, возможность управления мощностью нагрузки в больших пределах простыми средствами (так, как мы регулируем громкость звучания или выходное напряжение блока питания — обычным переменным резистором а не мощными контактами рубильника, движком реостата и т.д.).

Кроме того, «действия» электронной нагрузки можно легко автоматизировать, облегчив таким образом и сделав более изощренными испытания силового устройства с помощью электронной нагрузки. При этом, разумеется, освобождаются глаза и руки инженера, работа становится продуктивней. Но о прелестях всех возможных наворотов и совершенств — не в этой статье, и, быть может, от другого автора. А пока, — лишь о еще одной разновидности электронной нагрузки — импульсной.

Особенности импульсного варианта ЭН

Аналоговые электронные нагрузки безусловно хороши и многие из тех, кто использовал ЭН при наладке силовых устройств, оценили ее преимущества. Импульсные ЭН имеют свою изюминку, давая возможность для оценки работы блока питания при импульсном характере нагрузки таком, как, например, работа цифровых устройств. Мощные усилители звуковых частот так же оказывают характерное влияние на питающие устройства, а потому, неплохо было бы знать, как поведет себя блок питания, расчитанный и изготовленный для конкретного усилителя, при определенном заданном характере нагрузки.

При диагностике ремонтируемых блоков питания эффект применения импульсной ЭН так же заметен. Так, например, с помощью импульсной ЭН была найдена неисправность современного компьютерного БП. Заявленная неисправность данного 850-ваттного БП была следующей: компьютер при работе с этим БП выключался произвольно в любое время при работе с любым приложением, независимо от потребляемой, на момент выключения, мощности. При проверке на обычную нагрузку (куча мощных резисторов по +3В, +5В и галогенных лампочек по +12В) этот БП отработал на «ура» в течении нескольких часов при том, что мощность нагрузки составила 2/3 от его заявленной мощности. Неисправность проявилась при подключении импульсной ЭН к каналу +3В и БП начал отключаться, едва стрелка амперметра доходила до деления 1А. При этом токи нагрузки по каждому из прочих каналов положительного напряжения не превышали 3А. Неисправной оказалась плата супервизора и была заменена на аналогичную (благо, был такой же БП с выгоревшей силовой частью), после чего БП заработал нормально на максимальном токе, допустимом для используемого экземпляра импульсной ЭН (10А), которая и является предметом описания в данной статье.

Идея

Идея создания импульсной нагрузки появилась достаточно давно и впервые была реализована в 2002 году, но не в теперешнем ее виде и на другой элементной базе и для несколько иных целей и не было в то время для меня лично достаточных стимулов и прочих основаий для развития этой идеи. Сейчас звезды стоят иначе и что-то сошлось для очередного воплощения этого устройства. С другой стороны, устройство изначально имело несколько иное назначение — проверка параметров импульсных трансформаторов и дросселей. Но одно другому не мешает. Кстати, если кто-то захочет заняться исследованием индуктивных компонентов с помощью этого или аналогичного устройства, пожалуйста: ниже архивы статей маститых (в области силовой электроники) инженеров, посвященных этой теме.

Итак, что же представляет собой «классическая» (аналоговая) ЭН в принципе. Токовый стабилизатор, работающий в режиме короткого замыкания. И ничего больше. И будет прав тот, кто в порыве какой угодно страсти замкнет выходные клеммы зарядного устройства или сварочного аппарата и скажет: это — электронная нагрузка! Не факт, конечно, что подобное замыкание не будет иметь пагубных последствий, как для устройств, так и для самого оператора, но и то и другое устройство действительно являются источниками тока и вполне могли бы претендовать после определенной доводки на роль электронной нагрузки, как и любой другой сколь угодно примитивный источник тока. Ток в аналоговой ЭН будет зависеть от напряжения на выходе проверяемого БП, омического сопротивления канала полевого транзистора, устанавливаемого величиной напряжения на его затворе.

Ток в импульсной ЭН будет зависеть от суммы параметров в число которых будет входить ширина импульса, минимальное сопротивление открытого канала выходного ключа и свойства проверяемого БП (емкость конденсаторов, индуктивность дросселей БП, выходное напряжение).
При открытом ключе ЭН образует кратковременное короткое замыкание, при котором конденсаторы испытуемого БП разряжаются, а дроссели (если они содержатся в конструктиве БП) стремяться к насыщению. Классического КЗ, однако, не происходит, т.к. ширина импульса ограничена во времени микросекундными величинами, определяющими величину разрядного тока конденсаторов БП.
В то же время проверка импульсной ЭН является более экстремальной для проверяемого БП. Зато и «подводных камней» при такой проверке выявляется больше, вплоть до качества питающих проводников, подводимых к питающему устройству. Так, при подключении импульсной ЭН к 12-тивольтовому БП соединительными медными проводами диаметром жилы 0,8мм и токе нагрузки 5А, осциллограмма на ЭН выявила пульсации, представляющие собой последовательность прямоугольных импульсов размахом до 2В и остроконечными выбросами с амплитудой, равной напряжению питания. На клеммах самого БП пульсации от ЭН практически отсутствовали. На самой ЭН пульсации были сведены к минимуму (менее 50мВ) при помощи увеличения количества жил каждого питающих ЭН проводников — до 6. В «двухжильном» варианте минимума пульсаций, сопоставимого с «шестижильным», удалось достигнуть установкой дополнительного электролитического конденсатора емкостью 4700мФ в точках соединения питающих проводов с нагрузкой. Так что, при построении БП, импульсная ЭН очень даже может пригодиться.

Схема


ЭН собрана на популярных (благодаря большому количеству утилизированных компьютерных БП) компонентах. Схема ЭН содержит генератор с регулируемой частотой и шириной импульсов, термо-и-токовую защиту. Генератор выполнен на ШИМ TL494.

Регулировка частоты осуществляется переменным резистором R1; скважности — R2; термочувствительности — R4; ограничение тока — R14.
Выход генератора умощнен эмиттерным повторителем (VT1, VT2) для работы на емкости затворов полевых транзисторов числом от 4-х и более.

Генераторная часть схемы и буферный каскад на транзисторах VT1, VT2 могут быть запитаны от отдельного источника питания с выходным напряжением +12…15В и током до 2А или от канала +12В проверяемого БП.

Выход ЭН (сток полевого транзистора) и соединяется с «+» проверяемого БП, общий провод ЭН — с общим проводом БП. Каждый из затворов полевых транзисторов (в случае их группового использования) должен быть соединен с выходом буферного каскада собственным резистором, нивелирующим разницу параметров затворов (емкость, пороговое напряжение) и обеспечивающим синхронную работу ключей.

На фотографиях видно, что на плате ЭН имеется пара светодиодов: зеленый — индикатор питания нагрузки, красный индицирует срабатывание усилителей ошибки микросхемы при критической температуре (постоянное свечение) или при ограничении тока (едва заметное мерцание). Работой красного светодиода управляет ключ на транзисторе КТ315, эмиттер которого соединен с общим проводом; база (через резистор 5-15кОм) с выводом 3 микросхемы; коллектор — (через резистор 1,1 кОм) с катодом светодиода, анод которого соединен выводам 8, 11, 12 микросхемы DA1. На схеме этот узел не показан, т.к. не является безусловно обязательным.

Не указанные на схеме номиналы резисторов и конденсаторов:

По поводу резистора R16. При прохождении через него тока 10А, рассеиваемая на резисторе мощность составит 5Вт (при указанном на схеме сопротивлении). В реальной конструкции используется резистор сопротивлением 0,1 Ом (не оказалось нужного номинала) и мощность, рассеиваемая на его корпусе при том же токе, составит 10Вт. Температура резистора при этом гораздо выше температуры ключей ЭН, которые (при использовании радиатора, показанного на фото) греются не сильно. Поэтому термодатчик лучше установить на резисторе R16 (или в непосредственной близости), а не на радиаторе с ключами ЭН.

Еще несколько фото

Файлы

datagor.ru

Электронная импульсная нагрузка на базе TL494 — Регуляторы мощности — Источники питания

Все электронщики, занимающиеся конструированием устройств электропитания, рано или поздно сталкиваются с проблемой отсутствия нагрузочного эквивалента или функциональной ограниченностью имеющихся нагрузок, а так же их габаритами. К счастью, появление на российском рынке дешевых и мощных полевых транзисторов несколько исправило ситуацию.

Стали появляться любительские конструкции электронных нагрузок на базе полевых транзисторов, более пригодных к использованию в качестве электронного сопротивления, нежели их биполярные собратья: лучшая температурная стабильность, практически нулевое сопротивление канала в открытом состоянии, малые токи управления — основные преимущества, определяющие предпочтительность их использования в качестве регулирующего компонента в мощных устройствах. Более того, самые разнообразные предложения появились от производителей приборов, прайсы которых пестрят самыми разнообразными моделями электронных нагрузок. Но, так как производители ориентируют свою весьма сложную и многофункциональную продукцию под названием «электронная нагрузка» в основном на производство, цены на эти изделия настолько высоки, что покупку может позволить себе лишь весьма состоятельный человек. Правда, не не совсем понятно, — зачем состоятельному человеку электронная нагрузка. 

ЭН промышленного изготовления, ориентированного на любительский инженерный сектор, мною замечено не было. Значит, опять придется все делать самому. Э-эх… Начнем.

 

Преимущества электронного эквивалента нагрузки

Чем же в принципе электронные нагрузочные эквиваленты предпочтительнее традиционных средств (мощные резисторы, лампы накаливания, термонагреватели и прочие приспособления), используемых зачастую конструкторами при наладке различных силовых устройств? 

Граждане портала, имеющие отношение к конструированию и ремонту блоков питания, несомненно знают ответ на этот вопрос. Лично я вижу два фактора, достаточных для того, что бы иметь в своей «лаборатории» электронную нагрузку: небольшие габариты, возможность управления мощностью нагрузки в больших пределах простыми средствами (так, как мы регулируем громкость звучания или выходное напряжение блока питания — обычным переменным резистором а не мощными контактами рубильника, движком реостата и т.д.). 

Кроме того, «действия» электронной нагрузки можно легко автоматизировать, облегчив таким образом и сделав более изощренными испытания силового устройства с помощью электронной нагрузки. При этом, разумеется, освобождаются глаза и руки инженера, работа становится продуктивней. Но о прелестях всех возможных наворотов и совершенств — не в этой статье, и, быть может, от другого автора. А пока, — лишь о еще одной разновидности электронной нагрузки — импульсной. 
 

Особенности импульсного варианта ЭН

Аналоговые электронные нагрузки безусловно хороши и многие из тех, кто использовал ЭН при наладке силовых устройств, оценили ее преимущества. Импульсные ЭН имеют свою изюминку, давая возможность для оценки работы блока питания при импульсном характере нагрузки таком, как, например, работа цифровых устройств. Мощные усилители звуковых частот так же оказывают характерное влияние на питающие устройства, а потому, неплохо было бы знать, как поведет себя блок питания, расчитанный и изготовленный для конкретного усилителя, при определенном заданном характере нагрузки.

При диагностике ремонтируемых блоков питания эффект применения импульсной ЭН так же заметен. Так, например, с помощью импульсной ЭН была найдена неисправность современного компьютерного БП. Заявленная неисправность данного 850-ваттного БП была следующей: компьютер при работе с этим БП выключался произвольно в любое время при работе с любым приложением, независимо от потребляемой, на момент выключения, мощности. При проверке на обычную нагрузку (куча мощных резисторов по +3В, +5В и галогенных лампочек по +12В) этот БП отработал на «ура» в течении нескольких часов при том, что мощность нагрузки составила 2/3 от его заявленной мощности. Неисправность проявилась при подключении импульсной ЭН к каналу +3В и БП начал отключаться, едва стрелка амперметра доходила до деления 1А. При этом токи нагрузки по каждому из прочих каналов положительного напряжения не превышали 3А. Неисправной оказалась плата супервизора и была заменена на аналогичную (благо, был такой же БП с выгоревшей силовой частью), после чего БП заработал нормально на максимальном токе, допустимом для используемого экземпляра импульсной ЭН (10А), которая и является предметом описания в данной статье.
 

Идея

Идея создания импульсной нагрузки появилась достаточно давно и впервые была реализована в 2002 году, но не в теперешнем ее виде и на другой элементной базе и для несколько иных целей и не было в то время для меня лично достаточных стимулов и прочих основаий для развития этой идеи. Сейчас звезды стоят иначе и что-то сошлось для очередного воплощения этого устройства. С другой стороны, устройство изначально имело несколько иное назначение — проверка параметров импульсных трансформаторов и дросселей. Но одно другому не мешает. Кстати, если кто-то захочет заняться исследованием индуктивных компонентов с помощью этого или аналогичного устройства, пожалуйста: ниже архивы статей маститых (в области силовой электроники) инженеров, посвященных этой теме. 

Итак, что же представляет собой «классическая» (аналоговая) ЭН в принципе. Токовый стабилизатор, работающий в режиме короткого замыкания. И ничего больше. И будет прав тот, кто в порыве какой угодно страсти замкнет выходные клеммы зарядного устройства или сварочного аппарата и скажет: это — электронная нагрузка! Не факт, конечно, что подобное замыкание не будет иметь пагубных последствий, как для устройств, так и для самого оператора, но и то и другое устройство действительно являются источниками тока и вполне могли бы претендовать после определенной доводки на роль электронной нагрузки, как и любой другой сколь угодно примитивный источник тока. Ток в аналоговой ЭН будет зависеть от напряжения на выходе проверяемого БП, омического сопротивления канала полевого транзистора, устанавливаемого величиной напряжения на его затворе.

Ток в импульсной ЭН будет зависеть от суммы параметров в число которых будет входить ширина импульса, минимальное сопротивление открытого канала выходного ключа и свойства проверяемого БП (емкость конденсаторов, индуктивность дросселей БП, выходное напряжение).
При открытом ключе ЭН образует кратковременное короткое замыкание, при котором конденсаторы испытуемого БП разряжаются, а дроссели (если они содержатся в конструктиве БП) стремяться к насыщению. Классического КЗ, однако, не происходит, т.к. ширина импульса ограничена во времени микросекундными величинами, определяющими величину разрядного тока конденсаторов БП. 
В то же время проверка импульсной ЭН является более экстремальной для проверяемого БП. Зато и «подводных камней» при такой проверке выявляется больше, вплоть до качества питающих проводников, подводимых к питающему устройству. Так, при подключении импульсной ЭН к 12-тивольтовому БП соединительными медными проводами диаметром жилы 0,8мм и токе нагрузки 5А, осциллограмма на ЭН выявила пульсации, представляющие собой последовательность прямоугольных импульсов размахом до 2В и остроконечными выбросами с амплитудой, равной напряжению питания. На клеммах самого БП пульсации от ЭН практически отсутствовали. На самой ЭН пульсации были сведены к минимуму (менее 50мВ) при помощи увеличения количества жил каждого питающих ЭН проводников — до 6. В «двухжильном» варианте минимума пульсаций, сопоставимого с «шестижильным», удалось достигнуть установкой дополнительного электролитического конденсатора емкостью 4700мФ в точках соединения питающих проводов с нагрузкой. Так что, при построении БП, импульсная ЭН очень даже может пригодиться.
 

Схема

ЭН собрана на популярных (благодаря большому количеству утилизированных компьютерных БП) компонентах. Схема ЭН содержит генератор с регулируемой частотой и шириной импульсов, термо-и-токовую защиту. Генератор выполнен на ШИМ TL494

 

Регулировка частоты осуществляется переменным резистором R1; скважности — R2; термочувствительности — R4; ограничение тока — R14. 
Выход генератора умощнен эмиттерным повторителем (VT1, VT2) для работы на емкости затворов полевых транзисторов числом от 4-х и более. 

Генераторная часть схемы и буферный каскад на транзисторах VT1, VT2 могут быть запитаны от отдельного источника питания с выходным напряжением +12…15В и током до 2А или от канала +12В проверяемого БП. 

Выход ЭН (сток полевого транзистора) и соединяется с «+» проверяемого БП, общий провод ЭН — с общим проводом БП. Каждый из затворов полевых транзисторов (в случае их группового использования) должен быть соединен с выходом буферного каскада собственным резистором, нивелирующим разницу параметров затворов (емкость, пороговое напряжение) и обеспечивающим синхронную работу ключей.
 

 

На фотографиях видно, что на плате ЭН имеется пара светодиодов: зеленый — индикатор питания нагрузки, красный индицирует срабатывание усилителей ошибки микросхемы при критической температуре (постоянное свечение) или при ограничении тока (едва заметное мерцание). Работой красного светодиода управляет ключ на транзисторе КТ315, эмиттер которого соединен с общим проводом; база (через резистор 5-15кОм) с выводом 3 микросхемы; коллектор — (через резистор 1,1 кОм) с катодом светодиода, анод которого соединен выводам 8, 11, 12 микросхемы DA1. На схеме этот узел не показан, т.к. не является безусловно обязательным. 

 

По поводу резистора R16. При прохождении через него тока 10А, рассеиваемая на резисторе мощность составит 5Вт (при указанном на схеме сопротивлении). В реальной конструкции используется резистор сопротивлением 0,1 Ом (не оказалось нужного номинала) и мощность, рассеиваемая на его корпусе при том же токе, составит 10Вт. Температура резистора при этом гораздо выше температуры ключей ЭН, которые (при использовании радиатора, показанного на фото) греются не сильно. Поэтому термодатчик лучше установить на резисторе R16 (или в непосредственной близости), а не на радиаторе с ключами ЭН.

АРХИВ:Скачать

cxema.my1.ru

Электронная нагрузка 60 Вт.

Здравствуйте. В этом обзоре речь пойдет о электронной нагрузке.

У нее довольно неплохие характеристики для довольно демократичной цены в $21.

На данном ресурсе обзора этой штуки я не нашел, поэтому решил сделать.


Довольно подробный обзор есть вот тут:
shopper.life/elektronnaya-nagruzka-tester-akkumulyatorov-60-vt-0-30-v-0-999-a-7428.html

Честно говоря, как раз после этого обзора, на который я по случайности наткнулся в одном из комментариев на этом форуме, я решил заказать такую же. Постараюсь дополнить информацию к предыдущему обзору.

Основные параметры :

Напряжение питания: 12 В / 0,5А

Тестируемое напряжение: до 30 В

Задаваемый ток: до 10 А

Максимальная мощность: до 60 Вт

Начнем с достоинств :

1. Мощность разряда 60 Вт. На ее фоне мой Imax B6 mini выглядит как детская игрушка.


На радиаторе стоит монстроидальный транзистор w60ne10 имеющий просто дикий запас по мощности и диод Шоттки STPS3045CT. Так же прикреплен датчик температуры. В зависимости от нагрева регулируются обороты кулера. Регулируются они довольно странно.

2. Возможность мерить не только емкость в Ah, но и запасенную энергию в Wh. Почему это так принципиально? Большинство нагрузок ведет себя не как тупой резистор. И в целом потребляют не столько ток, сколько мощность. В следствие чего, при более низком напряжении с аккумулятора (в нагрузке) чтобы забрать с него ту же мощность, которая нужна ус-ву, оно увеличивает ток потребления.

Вот поэтому, имея одинаковую емкость в Ah, аккумулятор низкого качества проработает меньше, чем аккумулятор с такой же емкостью, но лучшего качества. Наглядно это можно увидеть при построении нагрузочной хар-ки (графика разряда) в каком-нибудь Imax-е.

Для примера проведу тестирование мало использованного 4х летнего аккумулятора Sanyo и практически нового ноунейм китайца, снятого с повербанка.



Емкость 2,26 Аh, энергоемкость 8,16 Втч. Итого, среднее напряжение разряда 3,61 В.



Емкость 2,35 Аh, энергоемкость 8,70 Втч. Итого, среднее напряжение разряда 3,70 В. Таким образом, если бы емкость была одинаковой, Sanyo проработали бы дольше за счет увеличенной энергоемкости.

3. Наличие доп. разъема для замера точного напряжения напрямую с аккумулятора.


Тут можно подключать тонкими проводами даже мощную нагрузку, т.к. при замере Енергоемкости напряжение через доп. разъем будет сниматься прямо с аккумулятора, а при замере Емкости сопротивление проводов (и падение напряжения на них) будет учитываться самой нагрузкой, т.к. схема включения «нагрузка+провода+ИП» получается последовательной и ток будет одинаков во всей цепи. Кстати говоря, напряжение он меряет и с силовых контактов, но, т.к. при протекании тока на проводах падает напряжение, то тут он меряет не столько напряжение на аккумуляторе, сколько на самой нагрузке. И это реально работает. Замеры примерно совпадают с мультиметром. Чем больше ток и чем тоньше провода тем заметнее получаются результаты замеров через встроенный шунт и с использованием доп. разъема.

4. Со слов обзорщика, ус-во должно быть довольно точным. Тоже не маловажный критерий, т.к. мой Imax B6 mini довольно сильно врет. При заданном минимальном токе 100 mA, он реально устанавливает порядка 150mA. При токах 0,2-1,5 А точность уже выше, но все равно значения на 5-10% отличаются заданных и от показаний мультиметра. Про то, что напряжение Imax mini меряет с ужасной точностью и говорить не стоит, но это не бросается в глаза, т.к. энергию он не меряет (для этого у него есть графики).

Значения выставленные с нагрузки примерно совпадают с измеренными мультиметром. Тут сложно сказать кто из них врет: то ли мультиметр, то ли нагрузка.






На больших токах различия уже значительнее, но опять таки мое оборудование не позволяет определить что тут врет: мультиметр или нагрузка.


Напряжение определяется верно. А если подключать толстые провода, то доп. контактами для замера напряжения можно пренебречь, т.к. встроенный шунт настроен точно т различий с мультиметром в 2 разрядах после запятой не замечено.

5. По размерам он оказался намного меньше, чем я его себе представлял. 110*70 мм. Примерно как мой Imax mini.

Так, теперь о недостатках :

1. Не рисует графики. Вот это самый ощутимый недостаток. Хотя если бы девайс это умел, стоил он бы совершенно других денег и я бы его не смог себе позволить. Вот пара аналогов:

1.1 mysku.ru/blog/china-stores/37393.html

Схожий по хар-кам и умеет рисовать графики, но больно бьет по карману. Да и размеры внушительные.

1.2 mysku.ru/blog/aliexpress/37353.html

Тоже умеет рисовать графики, но мощность разряда печальная, всего 25 Вт. К тому же, нет клемм и нет доп. входа для замера напряжения. Размеры радиатора тоже удручают.

2. Нагрузке требуется доп. питание 12В. К сожалению, у меня не было лишнего(не занятого) БП, поэтому решил поднапрячь мозг для решения проблемы. Замеры показали, что в независимости от режима схема потребляет примерно 1,5 Вт. Немного поразмыслив, я придумал простое и очень удобное решение. Для этого нам понадобится USB кабель, «повышайка» и штекер. Благо все это уже было прикуплено заранее для различных самоделок. В итоге это выглядит так:



Собрав и подключив этот кабель, устройство выдало ошибку питания. Поведя анализ было выяснено, что при старте нагрузка потребляет значительный ток. И чтобы она запустилась нужен был как минимум БП на 1А. Более слабые БП на 700мА просто проседали по напряжению, при этом повышающий преобразователь жутко писчал. Сначала я попробовал поднять выходное напряжение до 13В, но это не помогло. Попробовал подключить конденсаторы, чтобы сгладить просадку на старте, но старт слишком долгий и конденсаторы не могли удержать напряжение на должном уровне. Потом меня осенило. Чтобы снизить стартовую нагрузку на 5В БП нужно уменьшить повышающее напряжение. Методом тыка было обнаружено оптимальное напряжение 11В, при котором плата стартовала стабильно. При этом требования к току с USB зарядника понизилось и нагрузка стала работать с БП на 0,5А а так же с USB портов ноутбука и ПК. На 10В плата уже не стала стартовать выдавая ошибку даже бес писка преобразователя. На фото выше вы как раз видите как нагрузка работает через 500mA адаптер и через USB доктора. В холостом ходе и в работе ток по линии 5В невелик.

3. Нечитаемый индикатор. Проблема была решена наклеиванием на него изоленты. На фото видна разница, но в реальности разница намного ощутимей и индикатор читается при любом освещении.




4. Кулер хоть и не особо шумный, но все-же ощутимо шумит даже если нагрузка невелика и только чуть-чуть нагревает радиатор. Сбоку я «приколхозил» переключатель а сзади закрепил сопротивление примерно 30 Ом. При этом на слабой нагрузке он вообще не крутится, а как только радиатор разогреется как следует вентилятор включается. Актуально при тестировании аккумуляторов невысоким током ночью, чтобы шуршание кулера не раздражало. При более высокой нагрузке с этим резистором обороты кулера тоже поднимаются, так что автоматическая регулировка оборотов работает.

5. Кривоватый регулятор. На работоспособность не влияет.

В итоге получился довольно приятный на внешний вид приборчик, который занимает совсем немного места. Работать с ним одно удовольствие. Сначала меня посещали мысли заколхозить его в корпус, но эту идею я отбросил, т.к. ухудшится охлаждение, размеры получатся более габаритные, нужно будет думать как и куда подключать провода. Легче просто хранить его в какой-нить небольшой коробочке, например в той, в которой он и приехал.


***************************************************

UPDATE 19.10.16:

Т.к. ссылка на предыдущий обзор товара не доступна, то добавлю несколько моментов:

1. Данная нагрузка может работать как тестер аккумуляторов считая емкость и энергоемкость (продемонстрировалось выше), при этом напряжение меряется автоматически схемой (за вычетом падения на проводах подключения) или автоматически переключается на измерение с помощью дополнительного провода (если он подключен). Во время измерения нагрузка показывает на нижнем индикаторе текущий ток, а на верхнем ( переключаясь емкость и энергоемкость к данному моменту ). По окончанию можно просмотреть оба параметра.

2. Так же она может работать в режиме только нагрузки. Плюс данного режима в том, что она показывает ток на нижнем индикаторе и напряжение на верхнем (при этом на верхнем индикаторе показывается только напряжение), что довольно удобно наблюдая просадку напряжения при изменении тока. Вот только тут есть один коварный «минус». В таком режиме она не меряет реальное напряжение на нагрузке через дополнительный кабель, а только напряжение, попадающее на схему нагрузки через подключаемые провода, т.о. напряжение меряется не точно, учитывая падение на подключаемых проводах. Вот это, конечно, довольно ощутимый недостаток. Хотя никто нам не мешает подключить дополнительно вольтметр для точного замера напряжения.

3. Переключение режимов осуществляется зажатием кнопки «старт» при включении.

4. Требования к источнику питания ограничиваются мощностью встроенного вентилятора. При старте нагрузка раскручивает его на максимум. Если напряжение просядает ниже положенного, то выводится ошибка. Поэтому нужен БП 12В выдающий минимум 0,2А-0,3А иначе нагрузка не стартанет. Хотя в работе при минимальных оборотах кулера ей надо намного меньше.

5. Ток задается от 0,2А до 10А с шагом либо 0,1 либо 0,01 (шаг выбирается нажатием на ручку).

6. Мощность автоматически ограничивается снижением тока нагрузки.

*****

После некоторого времени использования у меня «зачесались» руки и я доработал свою нагрузку путем увеличения мощности.

Принцип доработки основан на следующем : мощность программно ограничена 60 Вт. Причем контроллер вычисляет ее умножая напряжение на задаваемый ток. Уменьшив сопротивление шунта (железной перемычки) например в 2 раза реальный ток будет в 2 раза больше, чем тот, что вы устанавливаете с помощью ручки и отображается на нагрузке. Вот только показания будут измеряться для тока в 2 раза меньшего, поэтому их в конце нужно будет умножить на 2.

Предлагаю вам свой вариант относительно простой доработки:

Мощность можно увеличить хоть на сколько раз. Приведу пример самого простого варианта для увеличения мощности, к примеру в 4 раза. Для этого не нужны никакие сложные расчеты, и глубокие познания в радиоэлектронике. Для этого нужно:

1. Модификация шунта.
ВАЖНО: Стандартный шунт рассчитан на 10А, если по нему гонять больший ток, ничего хорошего из этого не выйдет, поэтому нужно будет устанавливать свой шунт. И тут появляется проблема: при том же сопротивлении на большем токе будет выделяться НАМНОГО больше тепла. И тут 2 пути решения проблемы:
первый вариант: Просто уменьшаем сопротивление шунта в 4 раза. Сложность в том, чтобы добиться точно такого-же номинала сопротивления деленного на 4, иначе будет погрешность установки тока (в %).
второй вариант (более предпочтителен ) : Оставляем номинал шунта как есть, но увеличиваем его мощность. Я сделал просто — взял прямоугольный кусок текстолита и процарапал вдоль его изолирующую канавку. Припаял параллельно смд резисторов, чтобы они имели в сумме номинал шунта. Таким образом площадь рассеивания тепла значительно увеличилась и нам не составляет труда опытным путем точно подобрать сопротивление шунта, просто допаивая или отпаивая резисторы. Почему этот вариант более выгоден? А потому что на выходе можно через переключатель поставить вручную задаваемый резистивный делитель, которым можно устанавливать множитель задаваемого тока нагрузки по своему желанию х2, х3, х4 и т.д. Лично я в своей доработанной нагрузки так и сделал. Для увеличения тока в 4 раза (х4) ставим на выходе шунтирующего резистора «резистивный делитель» снижающий напряжение в 4 раза, например 30 кОм + 10 кОм. Значения взяты с потолка, но не рекомендую брать соотношения на слишком малых и слишком больших номиналах.

2. Рассчитать максимальную мощность нагрузки и исходя из нее выбрать необходимое кол-во транзисторов. Например, вы хотите рассеивать 40А на 12В = 480Вт. Прикинем, что каждый транзистор будет рассеивать нам по 60Вт, тогда надо 480/60=8 транзисторов.
НЕ МАЛОВАЖНЫЙ НЮАНС : транзисторы должны быть максимально идентичными и из одной партии, в противном случае (т.к. схема подключения параллельная) может получиться так, что при одном управляющем напряжении на всех затворах один из транзисторов откроется значительно шире всех остальных и вся мощность осядет на нем и он сгорит, вместо того, чтобы мощность распределялась на всех равномерно.

3. Подключаем все транзисторы параллельно,
НО И ТУТ ЕСТЬ ОДИН НЮАНС , который я на практическом опыте заметил. Затвор каждого транзистора подключается через отдельный резистор (я брал 1кОм, опять таки взял с потолка) к контакту, идущему на затвор от управляющего контроллера. Если резисторы не ставить, управляющая электроника не сможет ими рулить, т.к. в виду нелинейности ВАХ и параллельном подключении будут всевозможные глюки. И тут не важно разные это транзисторы или подобранные по идентичным параметрам из одной серии.

Теперь при установке, к примеру 1А, (8 транзисторов нагрузки) установят вам ток 4А.

Так же нужно учесть еще один нюанс: т.к. ток будет больше, то нужно будет вместо 1 поставить 2 и более диода шоттки, которые защищают от переполюсовки подключаемой нагрузки.

PS: Если будет время, желание и просьбы от читателей я как-нибудь добавлю фото получившегося у меня экземпляра.

UPDATE :

Существует версия этой нагрузки с проблемой неточной установки тока и постоянно вращающимся вентилятором. Проблему решил вот тут:
mysku.ru/blog/discounts/46663.html

mysku.ru