Схема конденсаторный микрофон – Как подключить к компьютеру конденсаторный микрофон 🚩 подключение студийных микрофонов 🚩 Комплектующие и аксессуары

Содержание

Самодельный конденсаторный стерео микрофон с усилителем

Самодельный конденсаторный стерео микрофон с усилителем в корпусе, напечатанном на 3D принтере

Данный микрофон можно использовать для записи закадрового голоса при

озвучивании видео, для скайпа, блогов, стримов и даже для записи вашего

музицирования под гитару. Также микрофон может быть использован с видео

камерами (с некоторыми оговорками, о чем я расскажу далее).

Это наверняка самая простая в мире схема микрофонного усилителя. Тем не

менее, даже такая простая схема позволяет намного улучшить качество записи

голоса при использовании не очень качественных звуковых карт,

интегрированных в материнские платы ноутбуков или десктопов. Обычно в таких

звуковых картах установлен микрофонный усилитель мягко выражаясь, не очень

хорошего качества. При подключении электретного капсюля к такому

микрофонному входу напрямую, без дополнительного микрофонного усилителя,

уровень записи может быть очень низким. При увеличении уровня записи

средствами Windows сильно возрастают помехи и шумы.

Простейший микрофонный усилитель на одном транзисторе, описанный здесь

может обеспечить дополнительное усиление до +20дБ, что зависит от того

напряжение питания, которое подает конкретная звуковая карта на микрофонный

вход и от усилительных свойств примененного транзистора. Если вы решите

сделать схему на выводных (не SMD) компонентах, то лучше всего применить

транзисторы BC547 или BC549 (примерный советский аналог — КТ3102). Это

малошумящие транзисторы с высоким коэффициентом усиления. 

В моей стереофонической SMD версии микрофона я применил SMD транзисторы BC847. Электретные капсюли я использовал типа Panasonic WM-61a, заказанные на Aliexpress. Это наиболее качественные из недорогих доступных микрофонных капсюлей с ровной частотной характеристикой. такие капсюли часто используются в недорогих измерительных микрофонах.

На принципиальной схеме (рис.1) сигнал с плюсового вывода капсюля подается непосредственно на базу транзистора. параллельно микрофону включен керамический конденсатор емкостью 100 пф. Он служит для устранения возможных высокочастотных помех. такие помехи (например сигнал мобильного телефона) могут продетектироваться одним из p-n переходов транзистора и вызвать на выходе звуковые шумы и помехи.

Резисторы R1 и R2 устанавливают режим работы транзистора по постоянному току. Для того, чтобы исключить из цепи отрицательной обратной связи переменную составляющую используется электролитический конденсатор C2. Если убрать этот конденсатор, то усиление очень сильно снизится. От емкости этого конденсатора зависит количество низких частот, которые воспроизводит наш микрофон. Чем больше емкость тем более низкие частоты способен усиливать каскад. Я решил слегка обрезать самые низкие частоты (при записи голоса они только мешают) и установил танталовый конденчсатор емкостью 10 микрофарад. Вы можете использовать конденсатор до 100 мкф.

Сигнал снимается непосредственно с коллектора транзистора. Сюда же подается питание от звуковой карты компьютера. Нагрузкой транзистора служит резистор, который находится внутри звуковой карты компьютера.

При подключении к большинству звуковых карт, интегрированных в материнские платы, на коллекторе транзистора будет напряжение в районе 1.2 в. При этом капсюлю в качестве питания достается всего около 0.8 вольта. Большинство электретных капсюлей нормально работают при таком низком напряжении питания, но это практически возможный минимум. По этой причине мой микрофон отказался нормально работать с видеокамерой Sony PJ810, при подключении к которой на коллекторе Q1 оказалось всего около 0.8 вольта, соответственно на капсюль пришло менее 0.5 вольта. И капсюль отказался работать при таком напряжении питания. Проблему можно решить введением в схему дополнительного источника питания — литиевой батарейки на 3 вольта, например типа 2032. Схема подключения приведена на рис. 2.

В этом случае у нас появляется дополнительные детали. Кроме самой батарейки, еще один конденсатор на 10 мкф, нагрузочный резистор на 1к и выключатель питания.  Ничего не поделаешь, за все нужно платить.

В моей видеокамере Sony установлен очень качественный микрофонный усилитель и поэтому в принципе отпадает необходимость использования дополнительного предусилителя. Капсюли WM-61a прекрасно работают при прямом подключении к микрофонному входу камеры. И поэтому для использования на видеокамере я сделал второй микрофон, вообще без усилителей. Но такой микрофон становится не универсальным. При подключении к компьютеру с дешевой интегрированной звуковой картой микрофон с прямым включением капсюлей работает плохо. Как поступить, выбирать вам. 

Посмотреть подробный видео-отчет об изготовлении этого микрофона (3 серии):

3D модель. Адаптер для установки на штатив

Рис. 2 Схема усилителя с питанием от литиевой батарейки CR2032

3D модель. Корпус микрофона — основание

3D модель. Корпус микрофона — крышка с крепленем

3D модель. Адаптер для установки на башмак видеокамеры. деталь 1

3D модель. Адаптер для установки на башмак видеокамеры. деталь 2

ВНИМАНИЕ! Часть, которая устанавливается в башмак камеры после печати нуждается в небольшой подгонке с помощью надфиля.

В случае стерео варианта микрофона для соединения с видеокамерой или компьютер необходим экранированный кабель с двумя сигнальными проводами. Для подключения используется стерео штекер типа «мини — джек».

Печатная платка для стерео варианта микрофона была разведедена в DipTrace и сделана методом фотолитографии с использованием пленочного негативного фоторезиста Alpha.

Интерактивный 3D просмотр.
Кликните в центре изображения, дождитесь загрузки 3D модели. Крутить: левая кнопка мыши; Размер: колесо мыши.

Рис. 1 Схема одного канала усилителя микрофона

musbench.com

МИКРОФОНЫ

   Для того, чтобы мы могли прослушать любую аудиозапись, записанную на грампластинку, аудиокассету или компакт диск, её предварительно нужно записать. Запись производится путем преобразования речи и вообще любых звуков в колебания звуковой частоты, и осуществляется это преобразование с помощью микрофона. В этой статье мы рассмотрим, какие бывают типы микрофонов. Микрофоны делятся по типам на:

  1. Угольные
     
  2. Динамические
     
  3. Конденсаторные
     
  4. Пьезомикрофоны

Угольный микрофон

Угольный микрофон обозначение на схемах

   Первый угольный микрофон был изобретен в Америке в девятнадцатом веке, изобретателем Эмилем Берлинером, а если быть более точным 4 марта 1877 года. Этот микрофон является одним из старейших видов микрофонов. Такие микрофоны использовались в трубках телефонных аппаратов, причем для работы ему не требовался усилитель, и его можно было подключать напрямую к высокоомным наушникам.

Фото угольный микрофон

   Состоит такой микрофон из коробочки с угольным порошком и мембраны из металлической пленки, которая колеблется под действием звуковых волн. До тех пор, пока перед микрофоном не говорят, мембрана находится в неподвижном состоянии, но стоит что-нибудь произнести, она, то прогибается внутрь, то выгибается наружу. При этом она, то уплотняет, то наоборот ослабляет давление на угольный порошок, сопротивление порошка, при этом, также меняется, оно то увеличивается, то уменьшается. Соответственно меняется и ток в цепи подключения микрофона. На следующем рисунке можно видеть принцип работы угольного микрофона: 

Рисунок — принцип работы угольного микрофона

   У угольного микрофона узкая частота пропускания, говоря другими словами, он плохо воспроизводит низкие и высокие частоты и имеет низкое качество звучания. Также устройство угольного микрофона можно видеть на рисунке ниже:

Рисунок — устройство угольного микрофона

Динамические микрофоны

Динамический микрофон изображение на схемах

   В звукозаписывающей аппаратуре используются в основном электродинамические и конденсаторные микрофоны. Первый динамический микрофон был изобретен в 1924 году в Германии, учеными Э. Герлахом и В. Шоттки (последний конечно знаком многим по диодам). Динамические микрофоны обладают более высокими характеристиками, по сравнению с угольными микрофонами. На следующем рисунке можно видеть устройство такого микрофона:

Рисунок — устройство динамического микрофона

   В данном микрофоне мембрана соединена с подвижной катушкой, которая находится на валу и может двигаться вперед или назад. На фото ниже можно видеть электродинамический микрофон с штекером мини джек 3.5 мм., с переходником джек 6.3 мм.

Электродинамический микрофон

   Такой переходник нужен для того, чтобы подключить микрофон с разъемом мини джек 3.5 мм., рассчитанный на подключение к компьютеру, к более серьезной звукозаписывающей аппаратуре с разъемом джек 6.3 мм. Также такие разъемы встречаются на музыкальных центрах и DVD плейерах с функцией караоке. 

Фото — переходник джек 3.5 -6.3 мм

   Принцип работы этого микрофона заключается в следующем: При звучании струны перед микрофоном, мембрана начинает колебаться вместе с прикрепленной к ней катушкой, и катушка пересекает силовые магнитные линии постоянного магнита. В катушке наводится переменное напряжение звуковой частоты. Амплитуда колебаний зависит от громкости звучания. На рисунке ниже изображена схема подключения динамического микрофона:

Схема подключения динамического микрофона

   На схеме изображен согласующий трансформатор. Он позволяет согласовать низкое сопротивление катушки микрофона, с большим сопротивлением усилителя звуковой частоты. На рисунке далее изображено обозначение на схемах микрофона:

Обозначение микрофона на схемах

   Угольные и динамические микрофоны мы уже рассмотрели, а сейчас изучим конденсаторные и пьезомикрофоны. 

Конденсаторные микрофоны

Конденсаторный микрофон изображение на схемах

   Конденсаторный микрофон изобрел в 1916 году Эдуард Венте. Такие микрофоны, как становится ясно из названия, сделаны на основе конденсатора. Устройство такого микрофона можно видеть на рисунке ниже:

Устройство конденсаторного микрофона

   Одна из обкладок конденсатора сделана из полимерной пленки с металлизацией, эта пленка при колебании со звуковой частотой, изменяет емкость конденсатора. Такие микрофоны на выходе имеют очень большое сопротивление и нуждаются в предусилителе. На фотографии изображен студийный конденсаторный микрофон:

Фото конденсаторный микрофон

Пьезо микрофоны

Пьезо микрофон изображение на схемах

   Пьезоэлектрический микрофон изобрели в Советском союзе ученые С. Н. Ржевкин и А. И. Яковлев в 1925 году.

Фото пьезо микрофон

   Принцип действия такого микрофона основан на том, что при деформации пьезо кристалла на его поверхности возникают электрические заряды. Такие микрофоны используются в звукоснимателях в акустических гитарах.

Фото пьезомикрофон в гитаре

   Усилитель подключаемый к пьезо микрофону должен иметь высокоомный вход. Пьезоэлектрические микрофоны не используются в студийной записи, так как не могут обеспечить необходиого в таких случаях высокого качества. На рисунке ниже можно видеть его устройство:

Устройство пьезо электрического микрофона

Беспроводные микрофоны

Беспроводной микрофон фото

   Микрофоны могут подключаться к усилителю, как с помощью кабеля, так и беспроводным способом по радиоканалу. Дистанция, на которой работает средний беспроводной микрофон, может достигать 100 и более метров. Такие микрофоны удобны и в быту, для использования в караоке при проведении вечеринок. Беспроводные микрофоны работают в VHF и UHF диапазонах.

Беспроводной микрофон — комплект

Микрофоны направленного действия

   Существуют также микрофоны направленного действия, позволяющие услышать, путем наведения на нужную точку, то что недоступно для прослушивания из-за большой дистанции, при использовании обычного микрофона. Такой микрофон изображен на фото ниже:

Фото направленный параболический микрофон

   В настоящее время использубтся почти исключительно электретные микрофоны (мобильная техника, диктофоны, гарнитуры ПК), остальные типы гораздо более редко. Обзор подготовлен по заказу сайта Радиосхемы. Автор — AKV.

   Форум по радиодеталям

   Обсудить статью МИКРОФОНЫ

radioskot.ru

Подключение динамического микрофона к компьютеру

Подключение
динамического микрофона к компьютеру.

Микрофонный вход звуковых карт предназначен
для подключения электретных(разновидность
конденсаторных) микрофонов. Конденсаторный микрофон
имеет встроенный усилитель и поэтому на
выходе достаточно сильный сигнал. 

Рис.1 Схема конденсаторного
микрофона.

В большинстве случаев электретные микрофоны имеют худшие характеристики
чем динамические. Имеет смысл при необходимости  качественной звукозаписи  использовать более
качественный (в сравнении с тем что устанавливается, например, в гарнитурах) 
динамический микрофон, который мог остаться со времен СССР, например от магнитофона, или микрофон шел от комплекта DVD с караоке. На фото нескольких примеров динамических микрофонов.

Рис.2 Динамический микрофон от
DVD плеера с караоке.

Рис.3 Динамический микрофон
Октава МД-47.
Год выпуска 1972. Замечательный звук.

Рис.4 Динамический микрофон.
Капсюль ДЭМШ-1А.

Рис.5 Стильная ретро гарнитура
с динамическим микрофоном.

Подключив к микрофонному входу
звуковой карты динамический
микрофон, не возможно получить
нормальный уровень сигнала, по крайней
мере, если не кричать в этот микрофон.
Необходимо усиление.





В отличие от динамических микрофонов,
все конденсаторные микрофоны требуют
питания усилителя. Для работы встроенного в
конденсаторный микрофон усилителя на средний контакт подается питание
примерно 3 вольта — Vbias(на рис.8 — +V). Схема усилителя для динамического микрофона аналогична встроенному усилителю конденсаторного микрофона.

Рис.7 Схема усилителя для
динамического микрофона.

Рис.8 Штекер микрофона.

Номиналы деталей варьируются очень широко.


Транзистор V1 n-p-n типа. Например С945, КТ315Б, КТ3102. Резистор R1 в пределах 47..100кОм,
желательно поставить подстроечный, и вывести транзистор в оптимальный режим, а затем измерить сопротивление построечного резистора и поставить постоянный близкого номинала. Хотя работать схема будет сразу с любым транзистором и резистором с номиналом в этих пределах. Конденсаторы С1,С2 от 10 мкф и до 100 мкф, оптимально 47 мкф на 10 В. Резистор R2 1..4,7кОм

Схему желательно разместить в
самом корпусе микрофона, как можно ближе
к капсюлю, чтобы избежать усиления шумов, 
которые могут проникнуть в кабель.
Если же микрофон должен использоваться
по прежнему назначению или нужна
возможность подключать разные
динамические микрофоны, то схему можно
смонтировать в отдельном экранированном
корпусе с гнездом для подключения
микрофонов и кабелем для подключения к
звуковой карте.





  Обратно









© 2010 Александр Джулай






rumlin.narod.ru

Подключение микрофона мкэ 3. Виды микрофонов

Практически все гарнитуры, которые предназначены для работы с ПК, имеют настолько «жалкие» характеристики, что попытайся вы использовать микрофон от такой гарнитуры для звукозаписи или того же караоке, ничего кроме разочарования не получите. Причина здесь одна – все подобные микрофоны предназначены для передачи речи и имеют очень узкий частотный диапазон. Это не только удешевляет саму конструкцию, но и способствует разборчивости речи, что является главным требованием гарнитуры.

Попытки же подключить обычный динамический или электретный микрофон обычно заканчиваются провалом – уровня с такого микрофона явно недостаточно для «раскачки» звуковой карты. Дополнительно сказывается незнание входной схемы звуковых карт и неправильное подключение динамического микрофона завршает дело. Собирать микрофонный усилитель и подключить «по уму»? Было бы неплохо, но гораздо проще использовать микрофон МЭК-3, который одно время широко использовался в носимой аппаратуре и до сих пор достаточно распространен. Но подключать «по уму», конечно, придется.

Микрофон этот электретный, обладает достаточно высокими характеристиками (частотный диапазон, к примеру, лежит в интервале 50 – 15 000 Гц) и, самое главное, в него встроен истоковый повторитель, собранный на полевом транзисторе, который не только согласует высокое сопротивление микрофона с усилителем, но и имеет более чем достаточный для любой звуковой карты уровень выходного сигнала. Единственный, пожалуй, недостаток – микрофону требуется питание. Но ток потребления его настолько мал, что двух пальчиковых батареек, соединенных последовательно, хватит на многие месяцы непрерывной работы. Взглянем на внутреннюю схему микрофона, которая расположена в алюминиевом стакане, и подумаем, как его подключить к компьютеру:

Серым цветом обозначен алюминиевый стакан, который является экраном и соединен с общим проводом схемы. Как я уже говорил, такой микрофон требует внешнего питания, причем минус 3-5 В нужно подать на резистор (красный провод), а плюс – на синий. С белого будем снимать полезный сигнал.

А теперь взглянем на схему микрофонного входа компьютера:

Оказывается сигнал должен подаваться только на самый кончик разъема, обозначенный зеленым, а на красный сама звуковая карта подает +5 В через резистор. Сделано это для питания предварительных усилителей гарнитур, если они используются. Мы этим напряжением не будем пользоваться по двум причинам: во-первых, нам нужна другая полярность, а если просто «перевернуть» провода, то микрофон будет сильно «фонить». Во-вторых, блок питания ПК импульсный и помеха на этих пяти вольтах будет приличная. Использование же гальванических элементов в плане помех идеально – чистая «постоянка» без малейших пульсаций. Итак, полная схема подключения нашего микрофона к компьютеру будет выглядеть следующим образом:

Развязывающий конденсатор, номинал которого может лежать в пределах 0.1 …1 мкФ, — керамический.

AUDIO техникаМикрофон с узкой. диаграммой направленностиМикрофон с узкой диаграммой направленности может найти применение при записи и усилений речи в условиях больших помех, a также дня записи звуке удаленных источников, например пения птиц. Направленность микрофона
существенно повышает отношение сигнал/шум на входе усилителя НЧ.Схематически устройство такого показано на рис.1. Основная его пустяковина — электромагнитный капсюль (3), размещенный в цилиндрическом футляре (1). Капсюль с обеих сторон залит эпоксидной смолой. Сторона капсюли, обращенная к открытому отверстию футляра, имеет «чувствительное окно» небольших размеров, обеспечивающее звуковым колебаниям доступ к мембране. С помощью трех растяжек капсюль подвешен на проволочном кольце (4), которое расположено в тыльной стороне
футляра. Для уменьшения отражения от стенок внутренность футляра покрыта слоем фетра или войлока (2) толщиной приблизительно 12 мм.Рис.1. Схематически устройство микрофона
.Микрофон включают на вход предварительного усилителя, одна из возможных схем которого приведена на рис.2.
Снижение собственных шумов первого каскада достигается выбором малошумящего транзистора T1 и использованием его при малом токе коллектора. Второй каскад, собранный на транзисторе Т2 по схеме с общим коллектором, позволяет согласовать выход устройства с усилителем мощности. «Practical wireless», 1969, N 7.Рис.2. предварительного усилителя.Примечание редакции. В качестве микрофонного капсюля можно использовать капсюль ДЭМШ. Для первого каскада…

Для схемы «Индикация подключения электроприборов к сети 220 В»

Устройство индикации позволяет контролировать при уходе из дома: выключены ли из сети электрорадиоприборы? Если в сети осталась включенной какая-либо нагрузка мощностью > 8 Вт, то светят оба светодиода HL1 и HL2 (см.рисунок).

Для схемы «Оригинальная схема модуляции генератора ВЧ»

Для схемы «ЭЛЕКТРОННОЕ «УХО»»

РадиошпионЭЛЕКТРОННОЕ «УХО»C. Сыч225876, Брестская обл., Кобринский р-н, п.Ореховский, ул.Ленина, 17 — 1.Предлагаемая предназначена для прослушивания разговоров в помещениях на небольшом расстоянии. Чувствительности хватает для уверенного восприятия слабого звука (шепот, тихий разговор) на расстоянии 3…4 м от микрофона. Дальность действия устройства — приблизительно 50 м (при длине антенны передатчика 30…50 см). Схему передатчика желательно уменьшить до минимальных размеров (чтобы его не было видно). При использовании устройств ва на небольших расстояниях (до 15 м) питание можно снизить до 1,5…3 В. Питать передатчик желательно от малогабаритных элементов. Ток потребления устройства составляет 3…4 мА.=ЭЛЕКТРОННОЕ УХОРабочая частота
передатчика — 66… Схемы дроздова трансивера 74 МГц. Катушка LI — содержит 6 витков провода ПЭВ-2 0,5 мм и намотана на каркасе диаметром 4 мм с шагом намотки 1…1,5 мм. Частота генератора на VT2 изменяется сдвиганием (раздвиганием) витков катушки L1.РАДИОЛЮБИТЕЛЬ 1/98, с.24Поскольку я получил много писем с вопросами по моей статье «Электронное «ухо», привожу дополнительные сведения о настройке и доработках схемы и чертеж печатной платы (РИС.1). =ЭЛЕКТРОННОЕ УХОСначала о настройке. Номиналы конденсаторов С1 и С2 следует подбирать в пределах 4,7…33 мкФ до получения наилучшего качества сигнала и максимальных чувствительности и девиации частоты. Резисторы R1 и R2 следует подбирать в пределах 330…420 кОм и 4,7…9,1 кОм соответственно для получения наилучшего качества. Транзистор VT1 следует избирать с наибольшим коэффициентом усиления по току. Вместо С4 после настройки можно включить постоянный конденса…

Для схемы «Радиомикрофон, с улучшенными характеристиками»

РадиошпионРадиомикрофон, с улучшенными характеристикамиШатун Александр Николаевич, 312040, Харьковская обл., г. Дергачи, тел.(8-263)3-21-18В разной литературе приводится множество описаний простых радиомикрофонов с ЧМ, но, на мой взгляд, они не отличаются разнообразием. Все это, по сути, это одно и тоже, в разных интерпритациях. Предлагаю схемный вариант некварцованого микрофона, который по сравнению с другими имеет более высокую стабильность частоты при изменении напряжения питания и расстройке антенны. Кроме того, микрофон имеет высокое качество сигнала, отсутствует также перемодуляция при громком разговоре вблизи микрофона, хотя чувствительность от высокая. При напряжении питания 3 вольта, мощности передатчика довольно для приема на расстоянии до 300 метров. хорошо работает и при напряжении 1,5 вольта. Дальность
действия и расход питания при этом уменьшаются. приведена на Рис.1. Все каскады имеют непосредственную связь по постоянному току. Сигнал с электретного подается через С2, который с резистором R2 образовывает цепь частотной коррекции. На транзисторе VT1 собран модулирующий каскад, который одновременно является стабилизатором рабочей точки для VT2,VT3, что позволяет выровнять резкое изменение мощности при изменении напряжения питания и уменьшить уход частоты. Задающий генератор собран на VT2 по схеме емкостной трехточки. Колебательный контур задающего генератора для улучшения электрических характеристик имеет два резонанса, последовательный L1,C5 и выше по частоте паралельный L1, C5, C4, C6. Возбуждение происходит на частоте паралельного резон…

Для схемы «МОДЕМ ДЛЯ ПАКЕТА»

Узлы радиолюбительской техникиМОДЕМ ДЛЯ ПАКЕТАВ моей предыдущей статье была опубликована пакетного модема для работы в УКВ диапазоне со скоростью 1200 Бод. Несколько позднее была успешно опробована и для работы в днапазоне KB со скоростью 300 Бод. что позволило разработать универсальный модем 1200/300 Бод. отличающийся простотой и надежностью. Принципиальная модема показана на рисунке. По сравнению с [I]. она не претерпела существенных изменений за исключ

iuni.ru

УСИЛИТЕЛЬ ЭЛЕКТРЕТНОГО МИКРОФОНА

      


   Идея сборки усилителя для микрофона давно витала в голове. Собравшись с силами, приступил к поиску схем усилителей. Большинство схем, просмотренных мною, были на ОУ, что не нравилось. Хотелось собрать проще, лучше и меньше (для ноутбука, ибо встроенный делали, видимо, только для галочки – качество плохое). И вот после недолгого поиска, была найдена и протестирована схема усилителя микрофонного сигнала с фантомным питанием. Фантомное питание (это когда питание и передача информации осуществляется по одному проводу) – огромный плюс этой схемы, ведь оно избавляет нас от сторонних источников питания и проблем связанных с ними. Например: если мы будем питать усилитель от простой батарейки, то она рано или поздно сядет, что приведет к неработоспобности схемы в данный момент; если будем питать от аккумулятора, то его придется рано или поздно заряжать, что тоже приведет к некоторым трудностям и ненужным движениям; если будем питать от БП, то здесь есть два минуса, которые, по моему мнению, отбрасывают вариант его использования – это провода (для питания нашего УМ) и помехи. От помех можно избавится многими способами (поставить стабилизатор, всяческие фильтры и т.д.), то от проводов избавиться не так уж и просто (можно, правда, сделать передачу энергии на расстоянии, но зачем городить целый комплекс устройств, для питания какого-то микрофонного усилителя?) к тому же это снижает практичность устройства. Перейдем к схеме:

Схема усилителя для электретного микрофона

Вариант схемы усилителя для динамического микрофона

   Схема отличается своей супер-простотой и мега-повторяемостью, в схеме два резистора (R1, 2), два конденсатора (C2, 3), штекер 3,5 (J1), один электретный микрофон и транзистор. Конденсатор С3 работает в качестве фильтра микрофона. Емкостью С2 на пренебрегать, то есть не надо ставить ни больше, ни меньше от номинала, указанного в схеме, иначе это повлечет за собой кучу помех. Транзистор Т1 ставим отечественный кт3102. Для уменьшения размеров устройства, использовал SMD транзистор с маркировкой «1Ks». Если ты вообще незнаешь как паять – вперед на форум.

   При замене Т1 особых изменений в качестве не последовало. Все остальные детали тоже в SMD корпусах, в том числе и конденсатор С3. Вся плата получилась довольно-таки маленькая, правда можно сделать ее еще меньше, используя технологию изготовления печатных плат ЛУТ. Но обошелся и простым полумиллиметровым перманентным маркером. Вытравил плату в хлорном железе за 5 минут. Получилась вот такая плата усилителя микрофона, которая крепится к штекеру 3,5.

   Все это неплохо помещается внутрь кожуха от штекера. Если тоже будете так делать, то советую делать плату как можно меньше, так как у меня она деформировала кожух и поменяла его форму. Плату желательно промыть растворителем или ацетоном. В итоге получилось такое полезное устройство, с хорошей чувствительностью:

   Прежде чем подключать микрофон к компьютеру, проверь все контакты и есть ли на входе микрофона питание +5v (а оно должно быть), во избежание комментариев типа: «Я собрал точно как в схеме а оно не работает!». Это можно сделать так: подключаешь новый штекер к разъему микрофона и меряешь напряжение вольтметром между массой (большим отводом) и двумя короткими отводами для пайки. Постарайся на всякий случай не закоротить между собой выводы штекера, когда будешь измерять напряжение. Что тогда будет, не знаю и проверять не хочу. У меня микрофонный усилитель работает уже 3 месяца, качеством и чувствительностью полностью доволен. Собирайте и отписывайтесь на форуме о своих результатах, вопросах, и, может быть даже о доработках корпуса, схемы и методах их изготовления. С вами был BFG5000, удачи!

   Форум по микрофонным предусилителям

   Обсудить статью УСИЛИТЕЛЬ ЭЛЕКТРЕТНОГО МИКРОФОНА

КОНДЕНСАТОРЫ

     Конденсаторы в радиоэлектронике — работа, типы, принцип действия и область использования.

ВИДЫ АККУМУЛЯТОРОВ

     Что такое аккумулятор и какие бывают его разновидности — простая теория для начинающих.

radioskot.ru

схема. Микрофонный усилитель для электретного микрофона

Микрофонный усилитель – это устройство, которое увеличивает проводимость сигнала. Обеспечивается указанный процесс за счет проводников. Стандартная модель включает в себя конденсаторы, а также тиристоры. Модуляторы в усилители устанавливаются различных типов.

Для увеличения чувствительности проводников применяются тетроды. Расширители устанавливаются различной емкости. Для поддержания стабильного напряжения в цепи используются контакторы. Для того чтобы узнать больше информации об устройствах, следует рассмотреть конкретные типы микрофонных усилителей.

Схема однотактной модификации

Однотактные микрофонные усилители (схема показана ниже) производятся на базе проводных конденсаторов. В данном случае триггер подбирается с высокой проводимостью сигнала. У многих моделей используется два резистора. Если рассматривать маломощный усилитель, то у него устанавливается один фильтр.

Непосредственно тиристоры применяются без проводника. Трансиверы у моделей устанавливаются за расширителями. Показатель выходной чувствительности колеблется в районе 4.5 мВ. В данном случае пороговое напряжение не превышает 10 В. Показатель перегрузки тока зависит от проводимости расширителя.

Модель двухтактного типа

Двухтактный усилитель на микросхеме изготавливается с полевыми конденсаторами. Расширители для моделей используются различной емкости. Как правило, параметр выходной чувствительности не превышает 5 мВ. В данном случае триггеры используются без проводников.

В среднем пороговое напряжение на изоляторах равняется 12 В. Сделать данного типа микрофонный усилитель своими руками легко. Для этого подбирается микросхема серии РР20. Непосредственно расширитель потребуется с емкостью в районе 6 пФ. Также с конденсаторами устанавливается тиристор. Проводимость сигнала в данном случае обязана составлять не менее 2.2 мк.

Устройство трехтактного усилителя

Трехтактные микрофонные усилители (схема показана ниже) содержат полевые конденсаторы. Всего в устройстве имеется два триггера. Показатель выходной чувствительности равняется 5.8 мВ. В данном случае расширители используются на 2 пФ. Непосредственно контакторы устанавливаются с изоляторами.

При необходимости можно собрать микрофонный усилитель своими руками. Для этого в первую очередь берется микросхема многоканального типа. Также для усилителя потребуется расширитель с емкость около 2.3 пФ. Если рассматривать простую модель, то фильтр разрешается использовать поглощающего типа. Параметр токовой перегрузки в среднем должен равняться не более 6 А.

Как сделать модель с общим эмиттером своими руками

Микрофонные усилители (схема показана ниже) с общим эмиттером складываются на базе полевых конденсаторов. Резисторы используются с высоким параметром проводимости. В первую очередь для сборки заготавливается тиристор. Устанавливать его следует за триггером. Показатель выходной чувствительности элемента должен составлять не более 6.5 мВ. В свою очередь, параметр токовой перегрузки обязан равняться 8 А. Контактор на плате устанавливается рядом с фильтром.

Устройство с коллектором

Усилители с коллектором хорошо подходят для студийных микрофонов. Конденсаторы у моделей применяются импульсного типа. Всего в цепи имеется три резистора. Параметр выходной чувствительности в среднем равняется 5.6 мВ. В данном случае триггер используется двухразрядного или трехразрядного типа. Если рассматривать первый вариант, то расширитель подбирается емкостью до 5 пФ.

Тиристор используется с контактором. Непосредственно трансиверы располагаются возле конденсаторов. Минимальное выходное напряжение составляет 12 В. Если рассматривать схему с трехразрядным триггером, то расширитель используется с емкостью более 5 пФ. Конденсаторы устанавливаются только векторного типа. Всего для модели потребуется три модулятора. Минимальное выходное напряжение равняется 15 В. Для стабилизации порогового тока используются фильтры.

Устройства с АРУ (автоматической регулировкой усиления)

Усилители с АРУ в последнее время являются довольно востребованными. В первую очередь они отличаются малым расходом электроэнергии. Тетроды у моделей применяются на два контакта. Если рассматривать схему простого усилителя, то фильтр устанавливается за тиристором. Емкость расширителя обязана составлять не менее 8 пФ. Показатель выходной чувствительности равняется около 4.5 мВ. В данном случае на микрофонный усилитель с АРУ разрешается устанавливать конденсаторы открытого типа. Всего для модели потребуется три скалярных транзистора. Расширители у модели устанавливаются в последовательном порядке.

Модели для студийных микрофонов Canyon

Для студийных моделей микрофонные усилители (схема показана ниже) производятся на базе импульсного модулятора. Всего для сборки потребуется два трансивера. Конденсаторы применяются с выходными контакторами. Минимальная выходная чувствительность равняется 2 мВ. В данном случае триггер разрешается использовать без изоляторов. Фильтр устанавливается поглощающего типа. В среднем пороговое напряжение в усилителях данного типа равняется 12 В.

Модели для конденсаторных микрофонов «Дефендер»

Усилитель на микросхеме для конденсаторных микрофонов состоит из полевых резисторов. Для решения проблем с проводимостью сигнала применяются лучевые тетроды. В данном случае триггеры используются как импульсного, так и оперативного типа. Модуляторы устанавливаются с низкой проводимостью. Параметр выходной чувствительности равняется не более 5 мВ. Расширители в данном случае разрешается использовать с емкостью до 4.2 пФ. Модели с хроматическими расширителями встречаются нечасто.

Усилитель для микрофона электретного типа «Свен»

Микрофонный усилитель для электретного микрофона складываются на базе проходных конденсаторов. В стандартной схеме устройства имеется три резистора. Устанавливаются они в последовательном порядке. Показатель проводимости сигнала у них равняется около 8 мк. В данном случае параметр выходной чувствительности колеблется в районе 3.3 мВ. Тиристоры на микрофонный усилитель для электретного микрофона подбираются без контакторов. Триггеры чаще всего применяются низкочастотного типа. Рядом с фильтром находится тетрод. Расширитель для моделей подходит с небольшой емкостью. Модуляторы чаще всего устанавливаются за триггером.

Модель для микрофонов Esperanza

Усилители для этих микрофонов производятся одноактного типа. Конденсаторы у моделей применяются полевые. Резисторы чаще всего устанавливаются с контакторами. Всего в схеме имеется три расширителя. Показатель емкости у них равняется 4.5 пФ. В данном случае выходная чувствительность не превышает 8 мВ. Триггеры для устройств подбираются на три контакта.

Параметр минимального порогового напряжения равняется 12 В. Фильтры для устройств подходят только поглощающего типа. Устанавливаться они обязаны рядом с модулятором. Непосредственно контакторы в устройствах используются с низкой проводимостью сигнала. За счет этого удается решить проблему с отрицательной полярностью.

Устройство под микрофоны Trust

Микрофонный усилитель на микросхеме для указанной модели складывается на базе проходных конденсаторов. Всего для устройства потребуется два резистора. Устанавливаться они обязаны вместе с фильтрами. Для самостоятельной сборки усилителя потребуется расширитель. Многие специалисты полагают, что максимальное сопротивление в цепи обязано составлять 50 Ом.

В этом случае триггер сильно не перегревается. Контакторы для модели подходят открытого типа. В некоторых случаях усилители содержат двухразрядные триггеры. Такие устройства относят к двухтактному типу. В этом случае модуляторы устанавливаются без изоляторов. Трансивер разрешается использовать с регулятором. Фильтры стандартно устанавливаются поглощающего типа. В среднем параметр выходной чувствительности в цепи равняется 3.5 мВ.

Усилитель для микрофонов Plantronics

Простой микрофонный усилитель для указанной модели содержит в себе полевые резисторы. Всего в цепи имеется две пары конденсаторов. Устанавливаются они с расширителем. Трансивер разрешается использовать дипольного либо импульсного типа. Если рассматривать первый вариант, то емкость расширителя не должна превышать 5 пФ. В данном случае триггер используется с контактором. Изоляторы на усилители устанавливаются за конденсаторами.

Если рассматривать модификацию с импульсным элементом, то триггер используется трехразрядного типа. Фильтры в данном случае применяются с сетчатой обкладкой. Все это необходимо для того, чтобы решить проблемы с отрицательной полярностью. Непосредственно тиристор устанавливается за модулятором. Емкость расширителя должна составлять не менее 5 пФ.

fb.ru

Микрофоны – основные параметры, маркировка и включение в схемах

   

   Микрофоны (электродинамические, электромагнитные, электретные, угольные) – основные параметры, маркировка и включение в электронных схемах.

   В радиоэлектронике находит широкое применение микрофон — устройство, преобразующее звуковые колебания в электрические. Под микрофоном обычно понимают электрический прибор, служащий для обнаружения и усиления слабых звуков.

   Основные параметры микрофонов

   Качество работы микрофона характеризуется несколькими стандартными техническими параметрами: чувствительностью, номинальным диапазоном частот, частотной характеристикой, направленностью, динамическим диапазоном, модулем полного электрического сопротивления, номинальным сопротивлением нагрузки и др.

   Маркировка

   Марка микрофона обычно наносится на его корпусе и состоит из букв и цифр. Буквы указывают тип микрофона:

   МД……………катушечный (или «динамический»),

   МДМ…………динамический малогабаритный,

   ММ ………….миниатюрный электродинамический,

   MЛ……………ленточный,

   МК……………конденсаторный,

   МКЭ…………электретный,

   МПЭ…………пьезоэлектрический.

   Цифры обозначают порядковый номер разработки. После цифр стоят буквы А, Т и Б, обозначающие, что микрофон изготовлен в экспортном исполнении — А, Т — тропическом, а Б – предназначен для бытовой радиоэлектронной аппаратуры (РЭА). Маркировка микрофона ММ-5 отражает его конструктивные особенности и состоит из шести символов:

   первый и второй ……………ММ — микрофон миниатюрный;

   третий…………………………..5 — пятое конструктивное исполнение;

   четвертый и пятый………..две цифры, обозначающие типоразмер;

   шестой………………………….буква, которая характеризует форму акустического входа (О — круглое отверстие, С — патрубок, Б — комбинированное).

   В практике радиолюбителей используется несколько основных типов микрофонов: угольные, электродинамические, электромагнитные, конденсаторные, электретные и пьезоэлектрические.

   Электродинамические микрофоны

   (название микрофонов этого типа считается устаревшим и сейчас эти микрофоны называют катушечными)

   Микрофоны этого типа очень часто используют любители звукозаписи, благодаря их сравнительно высокой чувствительности и практической нечувствительности к атмосферному влиянию, в частности, действию ветра. Они также не боятся толчков, просты в использовании и обладают способностью выдерживать без повреждений большие уровни сигналов. Положительные качества этих микрофонов преобладают над их недостатком: средним качеством записи звука.

   В настоящее время для радиолюбителей большой интерес представляют выпускаемые отечественной промышленностью малогабаритные динамические микрофоны, которые используются для звукозаписи, звукопередачи, звукоусиления и различных систем связи. Изготавливаются микрофоны четырех групп сложности — 0, 1, 2 и 3. Микрофоны малогабаритные групп сложности 0, 1 и 2 используются для звукопередачи, звукозаписи и звукоусиления музыки и речи, а группы 3 — для звукопередачи, звукозаписи и звукоусиления речи.

   Условное обозначение микрофона состоит из трех букв и цифр. Например, МДМ-1, микрофон динамический малогабаритный первого конструктивного исполнения.

   Особый интерес представляют электродинамические миниатюрные микрофоны серии ММ-5, которые можно впаивать прямо в плату усилителя или использовать в качестве встроенного элемента радиоэлектронной аппаратуры. Микрофоны относятся к четвертому поколению компонентов, которые разработаны для РЭА на транзисторах и интегральных микросхемах. Микрофон ММ-5 выпускается одного типа в двух вариантах: высокоомном (600 Ом) и низкоомном (300 Ом), а также тридцати восьми типоразмеров, которые отличаются только сопротивлением обмотки постоянному току, расположением акустического входа и его вида. Основные электроакустические параметры и технические характеристики микрофонов серии ММ-5 приведены в табл. 3.2.

   Таблица 3.2

   Тип микрофона

   ММ-5

   Вариант исполнения

   низкоомный

   высокоомный

   Номинальный диапазон рабочих частот, Гц

   500.. .5000

   Модуль полного электрического сопротивления обмотки, Ом

   135115

   900±100

   Чувствительность на частоте 1000 Гц, мкВ/Па,

   не менее (сопротивление нагрузки)

   300 (600 Ом)

   600 (300 Ом)

   Средняя чувствительность в диапазоне

   500…5000 Гц, мкВ/Па, не менее (сопротивление нагрузки)

   600 (600 Ом)

   1200 (3000 Ом)

   Неравномерность частотной характеристики

   чувствительности в номинальном диапазоне частот, дБ, не более

   24

   Масса, г, не более

   900 ± 100

   Срок службы, год, не менее

   5

   Размеры, мм

   9,6×9,6×4

   

   Рис. 3.6. Принципиальная схема включения на входе УЗЧ громкоговорителя в качестве м икрофона

   При отсутствии динамического микрофона радиолюбители часто используют вместо него обычный электродинамический громкоговоритель (рис. 3.6).

   Электромагнитные микрофоны

   Для усилителей низкой частоты, собранных на транзисторах и имеющих низкое входное сопротивление, обычно используют электромагнитные микрофоны. Электромагнитным микрофонам свойственна обратимость, то есть они могут использоваться и как телефоны. Широкое распространение имеют так называемый дифференциальный микрофон типа ДЭМШ-1 и его модификация ДЭМШ-1А. Неплохие результаты получаются при использовании вместо электромагнитных микрофонов ДЭМШ-1 и ДЭМ-4М обычных электромагнитных наушников от головных телефонов ТОН-1, ТОН-2, ТА-56 и др. (рис. 3.7…3.9).

   

   Рис. 3.7. Принципиальная схема включения на входе УЗЧ электромагнитного наушника в качестве микрофона

   

   Рис. 3.8. Принципиальная схема включения электромагнитного микрофона на входе УЗЧ на транзисторах

   

   Рис. 3.9. Принципиальная схема включения электромагнитного микрофона на входе УЗЧ на операционном усилителе.

   Электретные микрофоны

   В последнее время в бытовых магнитофонах используются электретные конденсаторные микрофоны. Электретные микрофоны имеют самый .широкий диапазон частот: 30…20000 Гц. Микрофоны этого типа дают электрический сигнал в два раза больший нежели обычные угольные.

   Промышленность выпускает электретные микрофоны МКЭ-82 и МКЭ-01 по размерам аналогичные угольным МК-59 и им подобным, которые можно устанавливать в обычные телефонные трубки вместо угольных без всякой переделки телефонного аппарата. Этот тип микрофонов значительно дешевле обычных конденсаторных микрофонов, и поэтому более доступны радиолюбителям. Отечественная промышленность выпускает широкий ассортимент электретных микрофонов, среди них МКЭ-2 односторонней направленности для катушечных магнитофонов 1 класса и для встраивания в радиоэлектронную аппаратуру — МКЭ-3, МКЭ-332 и МКЭ-333. Для радиолюбителей наибольший интерес представляет конденсаторный электретный микрофон МКЭ-3, который имеет микроминиатюрное исполнение. Микрофон применяется в качестве встраиваемого устройства в отечественные магнитофоны, магниторадиолы и магнитолы, такие как, «Сигма-ВЭФ-260», «Томь-303», «Романтик-306» и др.

   Микрофон МКЭ-3 изготовляется в пластмассовом корпусе с фланцем для крепления на лицевой панели радиоустройства с внутренней стороны. Микрофон является ненаправленным и имеет диаграмму круга. Микрофон не допускает ударов и сильной тряски. В табл. 3.3 приведены основные технические параметры некоторых марок миниатюрных конденсаторных электретных микрофонов. На рис. 3.10 приведена схема включения распространенного в радиолюбительских конструкциях электретного микрофона типа МКЭ-3.

   Таблица 3.3

   Тип микрофона

   МКЭ-3

   МКЭ-332

   МКЭ-333

   МКЭ-84

   Номинальный диапазон рабочих частот, Гц

   50…16000

   50… 15000

   50… 15000

   300…3400

   Чувствительность по свободному полю на

   частоте 1000 Гц, мкВ/Па

   не более 3

   не менее 3

   не менее 3

   А – 6…12

   В – 10…20

   Неравномерность частотной характеристики

   чувствительности в диапазоне 50… 16000 Гц,

   дБ, не менее

   10

   —

   —

   —

   Модуль полного электрического сопротивления на 1000 Гц,

   Ом, не более

   250

   600 ±120

   600 ± 120

   —

   Уровень эквивалентного звукового давления,

   обусловленного собственными шумами микрофона,

   дБ, не более

   25

   —

   —

   —

   Средний перепад уровней чувствительности

   «фронт — тыл», дБ

   —

   не, менее 12

   не более 3

   —

   Условия эксплуатации: температура, ’С

   относительная влажность воздуха, не более

   5…30 85%

   при 20’С

   -10…+50

   95±3 % при 25’С

   10…+50

   95±3% при 25’С

   0…+45

   93% при 25’С

   Напряжения питания, В

   —

   1,5…9

   1,5…9

   1,3…4,5

   Масса, г

   8

   1

   1

   8

   Габаритные размеры (диаметр х длина), мм

   14×22

   10,5 х 6,5

   10,5 х 6,5

   22,4×9,7

   

   Рис. 3.10. Принципиальная схема включения микрофона типа МКЭ-3 на входе транзисторного УЗЧ

   Угольные микрофоны

   Невзирая на то что угольные микрофоны постепенно вытесняются микрофонами других типов, но благодаря простоте конструкции и достаточно высокой чувствительности они все еще находят свое место в различных устройствах связи. Наибольшее распространение имеют угольные микрофоны, так называемые телефонные капсюли, в частности, МК-Ю, МК-16, МК-59 и др. Наиболее простая схема включения угольного микрофона приведена на рис. З.П. В этой схеме трансформатор должен быть повышающим и для угольного микрофона с сопротивлением R = 300…400 Ом его можно намотать на Ш-образном железном сердечнике с сечением 1…1,5 см2. Первичная обмотка (I) содержит 200 витков провода ПЭВ-1 диаметром 0,2 мм, а вторичная (II) — 400 витков ПЭВ-1 диаметром 0,08…0,1 мм. Угольные микрофоны в зависимости от их динамического сопротивления делят на 3 группы:

   1………низкоомные (около 50 Ом) с током питания до 80 мА;

   2………среднеомные (70… 150 Ом) с током питания не более 50 мА;

   3………высокоомные (150…300 Ом) с током питания не более 25 мА.

   Из этого следует, что в цепи угольного микрофона необходимо устанавливать ток, соответствующий типу микрофона. В противном случае при большом токе угольный порошок начнет спекаться и микрофон испортится. При этом появляются нелинейные искажения. При очень малом токе резко снижается чувствительность микрофона. Угольные капсюли могут работать и при пониженном токе источника питания, в частности, в усилителях на лампах и транзисторах. Снижение чувствительности при пониженном питании микрофона компенсируется простым повышением коэффициента усиления усилителя звуковой частоты. В этом случае улучшается частотная характеристика, значительно снижается уровень шумов, повышается стабильность и надежность работы.

   

   Рис. 3.11. Принципиальная схема включения угольного микрофона с использованием трансформатора

   Вариант включения угольного микрофона в усилительный каскад на транзисторе дано на рис 3.12. Вариант включения угольного микрофона в сочетании с транзистором на входе лампового усилителя звуковой частоты по схеме рис. 3.13 позволяет получить большое усиление по напряжению.

   

   Рис. 3.12. Принципиальная схема включения угольного микрофона на входе транзисторного УЗЧ

   

   Рис. 3.13. Принципиальная схема включения угольного микрофона на входе гибридного УЗЧ, собранного на транзисторе и электронной лампе

   

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

nauchebe.net

Отправить ответ

avatar
  Подписаться  
Уведомление о