Схема устройства – схема, устройство, чертежи, типы, виды, принцип работы, распределитель гидравлический

Принципиальная схема — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 августа 2017;
проверки требуют 12 правок.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 августа 2017;
проверки требуют 12 правок.

Принципиальная схема, принципиальная электрическая схема — графическое изображение (модель), служащее для передачи с помощью условных графических и буквенно-цифровых обозначений (пиктограмм) связей между элементами электрического устройства.

Принципиальная схема, в отличие от разводки печатной платы не показывает взаимного (физического) расположения элементов, а лишь указывает на то, какие выводы реальных элементов (например, микросхем) с какими соединяются. При этом допускается объединение группы линий связи в шины, но необходимо четко указывать номера линий, входящих в шину и выходящих из неё. Использование направленных линий связи, в отличие от структурной и функциональной схем, не допускается. Обычно, при разработке радиоэлектронного устройства, процесс создания принципиальной схемы является промежуточным звеном между стадиями разработки функциональной схемы и проектированием печатной платы.

В ГОСТ 2.701-2008 принципиальная схема определяется как «схема, определяющая полный состав элементов и связей между ними и, как правило, дающая детал

ru.wikipedia.org

ПРИНЦИПИАЛЬНАЯ СХЕМА

   Одним из обязательных умений радиолюбителя, как впрочем и любого человека, непосредственно связанного с ремонтом или обслуживанием электрической и электронной техники, является умение читать принципиальные электрические схемы. Что же такое принципиальная схема? 

   Это схема, в которой каждая деталь обозначается графически, и после изучения которой, нам становится ясно, каким образом они все соединяются между собой. Принципиальные схемы являются важнейшими из схем, так как они позволяют понять, как функционирует устройство в целом. Вы не найдете на принципиальных схемах изображения самого устройства, с клеммами или выводами, к которым паяются или зажимаются под винтовое соединение провода, для этого служат монтажные схемы. На рисунке ниже изображена монтажная схема подключения электросчетчика:

   Как нам известно, из школьного курса физики, соединение на схеме, в месте пересечения проводов обозначается жирной точкой.

   Такое же пересечение проводов без точки означает, что соединения в данном месте нет. Есть ряд правил, по которым составляются принципиальные схемы, например входные части в устройстве, принято располагать в левой части схемы, а выходные в правой части. Это можно видеть на примере простейшего усилителя на одном транзисторе, части входных цепей у нас выделены красным, а выходных зеленым:

   Таким обозначением, как на рисунке ниже обозначается, любой источник питания постоянного тока. Это может быть как батарейки, так и сетевой блок питания. Длинной чертой обозначается при этом положительный полюс источника питания или плюс, а короткой отрицательный полюс или минус. 

   Такое обозначение на схемах обозначает батарею из нескольких соединенных последовательно гальванических элементов (батареек).

   На следующем рисунке мы можем видеть обозначение, которое может, в зависимости от того, в какой схеме используется, означать как кнопку с фиксацией или без фиксации, однополосный тумблер, или клавишный выключатель, так и контакт какого либо устройства, например реле.

   Контакты реле могут быть, как свободно замкнутыми, так и свободно разомкнутыми. Поясню, что свободно разомкнутые контакты, это контакты которые находятся в разомкнутом состоянии при отсутствии напряжения на катушке реле. На рисунке ниже приведены примеры свободно разомкнутого и свободно замкнутого контактов:  

   Следующее обозначение обозначает спаренные контакты, которые механически соединены между собой и включаются или отключаются одновременно. Это могут быть, как контакты реле, так и контакты переключателя или рубильника: 

   Как всем известно, у диода два вывода, катод и анод, обозначение диода можно видеть на рисунке ниже. Вершина треугольника, направленная к черточке, показывает своим направлением прямое включение диода, когда он проводит ток, от анода к катоду, от плюса к минусу. 

   В биполярных транзисторах, которые, как всем известно, имеют три вывода базу, эмиттер, коллектор, выводом со стрелкой обозначают эмиттер, основание транзистора является базой, а оставшийся вывод, обозначающийся просто черточкой будет коллектором. 

   Причем с помощью стрелки обозначающей эмиттер и указывающей внутрь, либо наружу транзистора, обозначают структуру транзистора. Эта стрелка символизирует собой (также, как и в диоде) p-n переход, и направлена также от плюса к минусу или от положительного электрода к отрицательному. 

   Транзистор у нас представляет собой, условно говоря, два диода соединенных между собой либо катодами, либо анодами. Соответственно, если базовый электрод у нас отрицательный, то это будет транзистор p-n-p структуры, а если положительный, то n-p-n структуры.

   В тиристорах есть три электрода, это уже знакомые нам по диоду и имеющие такое же обозначение катод и анод, плюс управляющий электрод. Его обозначение можно увидеть на рисунке ниже:

   Конденсаторы у нас обозначаются на схемах двумя параллельными полосками, которые подразумевают собой 2 обкладки конденсатора. 

   У полярного электролитического конденсатора в обозначении добавлен знак плюс, указывающий на положительный электрод конденсатора, который нужно подключать строго в соответствии со схемой. 

   Переменные и подстроечные конденсаторы обозначаются как и обычные конденсаторы, но имеют в своем обозначении косую черту, в знак того, что они могут изменять свою емкость. Если эта черта заканчивается стрелкой, то это конденсатор переменой емкости рассчитанный при работе на многократное изменение положения обкладок или говоря другими словами на частое изменение емкости. Если же косая черта заканчивается поперечной черточкой, то это подстроечный конденсатор, такой конденсатор обычно регулируют только один раз, при сборке устройства.

   На рисунке выше мы можем видеть изображение на схемах постоянных резисторов. Они имеют постоянное сопротивление, и два вывода. Переменные имеют три вывода и позволяют регулировать сопротивление, между центральным и крайними выводами, от нуля до номинального сопротивления резистора.

   Светодиоды обозначаются как диод (иногда в круге, иногда без него) с двумя стрелками, направленными от диода. Иногда диод обводят кружочком.

   На рисунке ниже изображено обозначение трансформатора, в данном случае трансформатор взят с несколькими вторичными обмотками:

   Дроссель (катушка с сердечником), как он изображается на схемах, на рисунке ниже под цифрой два, изображение катушки под цифрой один:

   И катушка с подстраиваемым сердечником изображена на рисунке три. Изображение разъемов, применяемое в электротехнике можно видеть на рисунке ниже, в данном случае изображена колодка разъемов, или говоря другими словами, несколько штук спаренных между собой.

   На следующей принципиальной схеме изображено реле:

   Показана катушка реле (слева) и две группы контактов, которые могут работать как на замыкание, так и на размыкание. Далее изображен диодный мост так, как он обозначается на схемах, причем в ходу оба изображения одного и того же моста.

   Здесь изображено обозначение на схемах динамической головки, или говоря по другому — обычного динамика:

   А тут мы можем видеть общее обозначение микрофона:

   Уверен, теперь вы без труда сможете самостоятельно расшифровать принципиальную электрическую схему любого устройства — телевизора, холодильника, ресивера и так далее. А чтоб закрепить пройденный материал, попробуйте расшифровать схему кота 🙂

   Конечно это лишь небольшая, хоть и основная часть условных обозначений элементов на схемах, но этого для начала вам вполне хватит. Урок подготовил — AKV.

   Форум по радиоэлектронике для начинающих

   Обсудить статью ПРИНЦИПИАЛЬНАЯ СХЕМА

radioskot.ru

Схемы для начинающих


Ещё один вариант изготовления лазерного излучателя средней мощности из обычного пишущего привода для компакт дисков.

24.01.2018 Читали: 7630

 

Вашему вниманию представляется сборник оригинальных принципиальных схем различной степени сложности. Профессионалы найдут здесь схемы металлоискателей и устройств на микроконтроллерах, переделку импульсных блоков питания от компьютера в регулируемые лабораторные БП или мощные зарядные устройства. Практические радиосхемы генераторов, преобразователей напряжения, измерительной техники. Любителям ретро, придётся по вкусу подборка схем, посвящённых ламповым усилителям, а сторонники современной элементарной базы, найдут для себя УНЧ на микросхемах TDA, STK и LM. Для начинающих радиолюбителей мы предлагаем простые схемки мигалок, генераторов звуковых эффектов и ФМ радиожучков. Даже серьёзное радиоустройство можно собрать используя минимум деталей, так как современная электроника переходит на специализированные малогабаритные микросхемы. Это увлекательное занятие даёт возможность спаять полезный прибор или интересную электронную игрушку, устройства измерения и автоматики. Радиолюбительское творчество нашло сотни тысяч сторонников во всех странах мира, объединяя талантливых людей и стирая границы. Все размещённые принципиальные электросхемы проверены, о чём свидетельствуют подробные фотографии и видео работы устройств. Мы не публикуем сборники из тысяч схем со всего интернета — лишь испытанные и работоспособные устройства занимают место на нашем сайте. Следует учитывать, что сборка один к одному не гарантирует исправную и надёжную работу электронных приборов. В процессе номиналы радиосхем могут отличаться от тех, что указаны в статьях. Так что приобретайте паяльник, припой, фольгированный стеклотестолит и приступайте к созданию своих, или повторению уже испытанных схем. Если возникают проблемы с поиском радиодеталей, и нужных компонентов нет в продаже в вашем городе вспомните, что на дворе 21-й век, и многие покупки делаются в интернет магазинах, доставка из которых вам на дом будет стоить дешевле, чем вы думаете. А более подробно про сборку и настройку той или иной схемы читайте на нашем форуме по схемотехнике.

Снижение расхода топлива в авто

Ремонт зарядного 6-12 В

Солнечная министанция

Самодельный ламповый

Фонарики Police

Генератор ВЧ и НЧ

elwo.ru

1. Полезные схемы для автолюбителей

АВТОМАТИЧЕСКОЕ ЗАРЯДНОЕ УСТРОЙСТВО

Устройство позволяет не только заряжать, но и восстанавливать аккумуляторы с засульфатированными пластинами за счет использования ассиметричного тока при зарядке в режиме заряд (5 А) — разряд (0,5 А) за полный период сетевого напряжения. В устройстве предусмотрена также возможность при необходимости ускорить процесс заряда.

В отличие от схем, приведенных на рис. 4.2 и 4.3, данное устройство имеет ряд дополнительных функций, способствующих удобству их использования. Так, при окончании заряда схема автоматически отключит аккумулятор от зарядного устройства. А при попытке подключить неисправный аккумулятор (с напряжением ниже 7 В) или же аккумулятор с неправильной полярностью схема не включится в режим заряда, что предохранит зарядное устройство и аккумулятор от повреждений.

В случае короткого замыкания клемм Х1 (+) и Х2 (—) при работе устройства перегорит предохранитель FU1.

Электрическая схема (рис. 4.4) состоит из стабилизатора тока на транзисторе VT1, контрольного устройства на компараторе D1, тиристора VS1 для фиксации состояния и ключевого транзистора VT2, управляющего работой реле К1.

 

Рис. 4.4. Автоматическое зарядное устройство

При включении устройства тумблером SA1 загорится светодиод HL2, и схема будет ждать, пока подсоединим аккумулятор к клеммам Х1, Х2. При правильной полярности подключения аккумулятора небольшой ток, протекающий через диод VD7 и резисторы R14, R15 в базу VT2, будет достаточным, чтобы транзистор открылся и сработало реле К1.

При включении реле транзистор VT1 начинает работать в режиме стабилизатора тока — в этом случае будет светиться светодиод HL1. Ток стабилизации задается номиналами резисторов в эмиттерной цепи VT1, а опорное напряжение для работы получено на светодиоде HL1 и диоде VD6 .

Стабилизатор тока работает на одной полуволне сетевого напряжения. В течение второй полуволны диоды VD1, VD2 закрыты и аккумулятор разряжается через резистор R8. Номинал R8 выбран таким, чтобы ток разряда составлял 0,5 А. Экспериментально установлено, что оптимальным является режим заряда током 5 А, разряда — 0,5 А.

Пока идет разряд, компаратор производит контроль напряжения на аккумуляторе, и при превышении значения 14,7 В (уровень устанавливается при настройке резистором R10) он включит тиристор. При этом начнут светиться светодиоды HL3 и HL2. Тиристор закорачивает базу транзистора VT2 через диод VD9 на общий провод, что приведет к выключению реле. Повторно реле не включится, пока не будет нажата кнопка СБРОС (SB1) или же не отключена на некоторое время вся схема (SA1).

Для устойчивой работы компаратора D1 его питание стабилизировано стабилитроном VD5. Чтобы компаратор сравнивал напряжение на аккумуляторе с пороговым (установленным на входе 2) только в момент, когда производится разряд, пороговое напряжение цепью из диода VD3 и резистора R1 повышается на время заряда аккумулятора, что исключит его срабатывание. Когда происходит разряд аккумулятора, эта цепь в работе не участвует.

При изготовлении конструкции транзистор VT1 устанавливается на радиатор площадью не менее 200 кв. см.

Силовые цепи от клемм Х1, Х2 и трансформатора Т1 выполняются проводом с сечением не менее 0,75 кв. мм.

В схеме применены конденсаторы С1 типа К50-24 на 63 В, С2 — К53-4А на 20 В, подстроечный резистор R10 типа СП5-2 (многооборотный),

постоянные резисторы R2…R4 типа С5-16МВ, R8 типа ПЭВ-15, остальные — типа С2-23. Реле К1 подойдет любое, с рабочим напряжением 24 В и допустимым током через контакты 5 А; тумблеры SA1, SA2 типа Т1, кнопка SB1 типа КМ1-1.

Для регулировки зарядного устройства потребуется источник постоянного напряжения с перестройкой от 3 до 15 В. Удобно воспользоваться схемой соединений, показанной на рис. 4.5.

Рис. 4.5. Схема соединений для настройки зарядного устройства

Настройку начинаем с подбора номинала резистора R14. Для этого от блока питания А1 подаем напряжение 7 В и изменением номинала резистора R14 добиваемся, чтобы реле К1 срабатывало при напряжении не менее 7 В. После этого увеличиваем напряжение с источника А1 до 14,7 В и настраиваем резистором R10 порог срабатывания компаратора (для возврата схемы в исходное состояние после включения тиристора надо нажать кнопку SB1). Может также потребоваться подбор резистора R1.

В последнюю очередь настраиваем стабилизатор тока. Для этого в разрыв цепи коллектора VT1 в точке «А» временно устанавливаем стрелочный амперметр со шкалой 0…5 А. Подбором резистора R4 добиваемся показаний по амперметру 1,8 А (для амплитуды тока 5 А), а после этого при включенном SA2 настраиваем R4, значение 3,6 А (для амплитуды тока 10 А).

Разница в показании стрелочного амперметра и фактической величины тока связана с тем, что амперметр усредняет измеряемую величину за период сетевого напряжения, а заряд производится только в течение половины периода.

В заключение следует отметить, что окончательную настройку тока стабилизатора лучше проводить на реальном аккумуляторе в установившемся режиме — когда транзистор VT1 прогрелся и эффект роста тока за счет изменения температуры переходов в транзисторе не наблюдается. На этом настройку можно считать законченной.

По мере заряда аккумулятора напряжение на нем будет постепенно возрастать, и, когда оно достигнет значения 14,7 В, схема автоматически отключит цепи заряда. Автоматика также отключит процесс зарядки в случае каких-то других непредвиденных воздействий, например при пробое VT1 или же исчезновении сетевого напряжения. Режим автоматического отключения может также срабатывать при плохом контакте в цепях от зарядного устройства до аккумулятора. В этом случае надо нажать кнопку СБРОС (SB1).

 

lib.qrz.ru

Устройства схемы — Net-Sveta.com

Краткое описание: Не секрет, что современная бытовая техника достаточно экономична, и оплата потребленной ею энергии не такой уж тяжелый камень на шее граждан. Другой вопрос электрообогреватель (камин, сауна, тепловая завеса на входе магазина, электрокотел, водонагреватель и т.д.) При помощи нашей схемы можно включить электрообогреватель (или любой другой электрический прибор не требовательный к форме питающего напряжения) в розетку совершенно незаметно для счетчика.
Как работает эта схема? После включения питания сетевое напряжение поступает одновременно на диоды VD1 и первичную обмотку трансформатора Т1. Если в момент включения регулятора в сети оказалось напряжение отрицательной полярности, ток нагрузки протекает по цепи эмиттер-коллектор VT1. Если полярность сетевого напряжения положительная, ток протекает по цепи коллектор-эмиттер VT1. Значение тока нагрузки зависит от величины управляющего напряжения на базе VT1. Управляющее напряжение формируется генератором на логических элементах (микросхема К155ЛА3). Частота генератора — 2кГц, скважность — 50% . Таким макаром наш камин превратился в высокочастотную (с точки зрения счетчика) нагрузку, а это ему ой как не нравится… Останется только в нужный момент открывать транзистор и счетчик начнет крутится куда надо. Параллельно нагрузке можно включить конденсатор (на схеме показан как С1) — это улучшит форму напряжения подаваемого на нагрузку. Емкость придется подбирать экспериментально, рекомендую использовать бумажные конденсаторы. Можно применить более мощный транзистор.

Ниже приведены две разные принципиальные схемы одного и тогоже устройства. Если увеличить масштаб рисунков — все элементы будут хорошо видны.

net-sveta.com

Структурная схема устройства | Основы РЕМОНТА

Что такое структурная схема

Структурная схема показывает основные функциональные части электронного изделия, назначение электронных блоков и взаимосвязи между ними. Схема отображает принцип действия электронных аппаратов в общем виде.

Действительное расположение компонентов на структурной схеме не учитывают и способ связи не раскрывают. Построение схемы должно давать наглядное представление о

  • Электронном изделии,
  • последовательности взаимодействия функциональных частей в изделии. Функциональные части на схеме показаны в виде прямоугольников или условных графических обозначений. При изображении функциональных частей в виде прямоугольников их наименования, типы и обозначения вписывают внутрь прямоугольников.

Направление хода процесса, происходящего в изделии, показаны стрелками, соединяющими функциональные части. На схемах простых изделии функциональные части располагают в виде цепочки в соответствии с ходом рабочего процесса в направлении слева направо. Схемы, содержащие несколько основных рабочих каналов, рекомендуется вычерчивать в виде параллельных горизонтальных строк. 

Ниже на нескольких примерах показаны правила и особенности построения структурных схем устройств и систем.

На рис.1 приведена упрощенная структурная схема телефона

Мобильный телефон имеет структуру микропроцессорной системы, которая содержит:
            — ЦП (один или два)

            — память (ОЗУ ПЗУ)

            — контролер питания

            — контролер зарядки

            — контролер (зачастую ПЛИС), усилитель, диплексер радиочастотного тракта

            — другая периферия

      Процессор как правило специализированный и содержит множество дополнительных возможностей.

рис 1

На рис рис. 2 Изображена структурная схема работы приемника

1) Усилитель высокой частоты выполнен на полевом транзисторе. Представляет собой резонансный усилитель с параллельным питанием.

Отличной особенностью контура является равномерность передачи выходного напряжения при минимальных изменениях

эквивалентного сопротивления в широком диапазоне частот р/ст.

 

2) Смеситель приемника выполнен на полевом двух затворном транзисторе.

 

3) УПЧ – усилитель промежуточной частоты состоит из трех одиночных резонансных усилителей, выполненных на полевых транзисторах

 

— ограничителя выполненного на биполярных транзисторах

 

— дискриминаторы, выполненного на контуре и диодах.

 

4) Ф.АТ – фильтр амплитудного телеграфирования служит для выделения сигналов амплитудного телеграфирования и состоит из:

 

-усилителя

 

-узкополосного кварцевого фильтра

 

Усилитель выполнен на схеме с полевым транзистором и служит для усиления напряжения.

Узкополосный кварцевый фильтр выполнен по мостовой схеме и

согласует выход фильтра со входом УНЧ передатчика.

 

Зная структурную схему ремонтируемой эл. техники мы упрощаем поиски неисправностей!!!

remosnov.ru

Схемы устройства и принцип действия

Двигателем внутреннего сгорания называется тепловой двига­тель поршневого типа, в котором химическая энергия топлива пре­образуется в тепловую непосредственно внутри рабочего ци­линдра.

В результате химической реакции топлива с кислородом воздуха образуются газообразные продукты сгорания с высокими давлением и температурой, которые являются рабочим телом дви­гателя. Продукты сгорания оказывают давление на поршень и вы­зывают его перемещение. Возвратно-поступательное движение поршня с помощью кривошипно-шатунного механизма превра­щается во вращательное движение коленчатого вала.


Двигатели внутреннего сгорания работают по одному из трех циклов: изохорному (цикл Отто), изобарному (цикл Дизеля) и смешанному (цикл Тринклера), различающихся характером про­текания процесса сообщения тепла рабочему телу. В смешанном цикле часть тепла сообщается при постоянном объеме, а осталь­ная часть при постоянном давлении. Отвод тепла во всех циклах совершается по изохоре.


Совокупность последовательных и периодически повторяю­щихся процессов, необходимых для движения поршня — наполне­ние цилиндра, сжатие, сгорание с последующим расширением газов и очистка цилиндра от продуктов сгорания — называется рабочим циклом двигателя. Часть цикла, проходящая за один ход поршня, называется тактом.


Двигатели внутреннего сгорания делятся на четырехтактные и двухтактные; в четырехтактных двигателях рабочий цикл совер­шается за четыре хода поршня, а в двухтактных — за два.


Судовые двигатели внутреннего сгорания в основном работают по смешанному циклу. Крайние предельные положения поршня в цилиндре называются соответственно верхней и нижней мерт­выми точками (в. м. т., н. м. т.). Расстояние по оси цилиндра, проходимое поршнем от одного до другого крайнего положения, называется ходом поршня S (рис. 125). Объем, описываемый поршнем при его движении между в. м. т. и н. м. т., называется рабочим объемом цилиндра Vs. Объем цилиндра над поршнем, когда последний находится в н. м. т., называется объемом камеры сжатия Vс. Объем цилиндра при положении поршня в н. м. т. на­зывается полным объемом цилиндра Vа : Va= Vс + Vs.


Отношение полного объема цилиндра к объему камеры сжатия называется степенью сжатия ? = Va / Vc.


Величина степени сжатия зависит от типа двигателя. Для су­довых дизелей степень сжатия равна 12—18. Главными конструк­тивными характеристиками двига­теля являются диаметр цилиндра, ход поршня, число цилиндров и га­баритные размеры.

Четырехтактный двигатель.

На рис. 125 показана схема устройства четырехтактного дизеля. Фунда­ментная рама 15 дизеля покоится на судовом фундаменте 1. Блок ци­линдров 11 закрепляется на станине двигателя 14. Поршень 9 под дей­ствием газов совершает возвратно-поступательное движение по зерка­лу цилиндровой втулки 10 и с по­мощью шатуна 13 вращает коленча­тый вал 2. Верхняя головка шатуна с помощью поршневого пальца 3 соединена с поршнем, а нижняя ох­ватывает мотылевую шейку колен­чатого вала. В крышке 7 цилиндра размещены впускной клапан 4, вы­пускной клапан 8 и топливная фор­сунка 6. Впускной и выпускной клапаны приводятся в действие через систему штанг и рычагов 5 от кулачных шайб распредели­тельных валов 12. Последние получают вращение от коленчатого вала.

Рабочий цикл в четырехтактном двигателе происходит за два оборота коленчатого вала — за четыре хода (такта) поршня. Из четырех ходов (тактов) три хода (такта) являются подготови­тельными, а один рабочим. Каждый такт носит название основ­ного процесса, происходящего во время данного такта.

Первый такт — впуск. При движении поршня вниз (рис. 126) над поршнем в цилиндре создается разрежение, и через принуди­тельно открытый впускной клапан а атмосферный воздух запол­няет цилиндр. Для лучшего заполнения цилиндра свежим заря­дом воздуха впускной клапан а открывается несколько раньше, чем поршень достигнет в. м. т.—точка 1; имеет место предваре­ние впуска (15—30° по углу поворота коленчатого вала). Закан­чивается впуск воздуха в цилиндр в точке 2. Впускной клапан а закрывается с углом запаздывания 10—30° после н. м. т. возможность использовать инерцию входящего с большой ско­ростью воздуха, что приводит к более полной зарядке цилиндра. Продолжительность впуска соответствует углу поворота коленча­того вала на 220—250° и на рисунке показана заштрихованным углом 1—2, а па диаграмме р—? — линией впуска 1—2.


Второй такт — сжатие. С момента закрытия впускного кла­пана а (точка 2) при движении поршня вверх начинается сжатие. Объем уменьшается, температура и давление воздуха увеличи­ваются. Продолжительность сжатия составляет угол 140—160° по­ворота коленчатого вала и заканчивается в точке 3. Давление в конце сжатия достигает 3—4,5 Мн/м2, а температура 800—1100° К. Высокая температура заряда воздуха обеспечивает самовоспламенение топлива. В конце хода сжатия, когда поршень .немного не дошел до в. м. т. (точка 3), производится впрыск топ­лива через форсунку б. Опережение подачи топлива (угол пред­варения 10—30°) дает возможность к приходу поршня в в. м. т. подготовить рабочую смесь к самовоспламенению.


Третий такт — рабочий ход. Происходит горение топлива и рас­ширение продуктов сгорания. Продолжительность сгорания топ­лива составляет 40—60° поворота коленчатого вала (процесс 3—4 на рисунке). В конце горения внутренняя энергия газов увеличи­вается, давление газов достигает значительной величины 58 Мн/м2, а температура 1500—2000° К. Точка 4 — начало рас­ширения газов. Под давлением газов поршень движется вниз, со­вершая полезную механическую работу. В конце расширения (угол опережения 20—40° до н. м. т.) — точка 5 — открывается выпускной клапан в, давление в цилиндре резко падает и по дости­жении поршнем н. м. т. оказывается равным 0,1—0,11 Мн/м2, а температура 600—800° К. Предварение выпуска обеспечивает минимальное сопротивление движению поршня вверх в последую­щем такте. Рабочий ход совершается за 160—180° угла поворота коленчатого вала.


Четвертый такт — выпуск. Продолжается от точки 5 до точки 6. При выпуске поршень, двигаясь вверх от н. м. т., выталкивает от­работавшие продукты сгорания. Выпускной клапан закрывается с некоторым запозданием (на 10—30° угла поворота коленчатого вала после в. м. т.). Это улучшает удаление отработавших про­дуктов горения за счет отсасывающего действия газов, тем более что в это время впускной клапан уже открыт. Такое положение клапанов называется «перекрытием клапанов». Перекрытие кла­панов обеспечивает более совершенное удаление продуктов сгора­ния. Выпуск осуществляется в течение 225—250° угла поворота коленчатого вала.

Двухтактный двигатель.

На рис. 127 показана схема работы двухтактного дизеля. Газораспределение в двухтактных двигате­лях осуществляется через продувочные окна П и выпускные окна В. Продувочные окна соединены с продувочным ресиве­ром Р, в который продувочным насосом Н нагнетается чистый воз­дух под давлением 0,12—0,16 Мн/м2. Выпускные окна, несколько выше расположенные, чем продувочные, соединяются с выпускным коллектором. Топливо подается в цилиндр форсункой Ф. Рабочий цикл двухтактного двигателя осуществляется за два хода поршня, за один оборот коленчатого вала. Открытие и закрытие выпускных и продувочных окон производится поршнем.


Рассмотрим последовательность процессов в цилиндре.


Первый такт — горение, расширение, выпуск и продувка. Пор­шень движется вниз от в. м. т. к н. м. т. В начале такта происхо­дит бурное горение с повышением давления газов до 5—10 Мн/м2 и температуры до 1700—1900° К для тихоходных двигателей и 1800—2000° К для быстроходных. Горение заканчивается в точке 4 и затем происходит расширение продуктов сгорания (участок 4—5) до давления 0,25—0,6 Мн/м2 и температуры 900—1200° К. При положении мотыля в точке 5 (за 50—70° до н. м. т.) откры­ваются выпускные окна, давление в цилиндре резко падает и на­чинается выпуск отработавших газов выпускного коллектора в ат­мосферу. Высота продувочных окон подбирается таким образом, чтобы к моменту их открытия давление газов в цилиндре было бы близко к давлению продувочного воздуха в продувочном ресивере. После открытия продувочных окон (точка 6) продувочный воздух, поступая в цилиндр, вытесняет продукты сгорания через выпускные окна, при этом часть воздуха уходит с отработавшими газами. При открытых продувочных окнах происходит принудительная очистка цилиндра и заполнение его свежим зарядом; этот процесс называется продувкой.


Второй такт. Процесс продувки продолжается также при дви­жении поршня вверх от н. м. т. до закрытия продувочных окон (точка 1). После закрытия поршнем выпускных окон (точка 2) процесс выпуска заканчивается и начинается процесс сжатия све­жего заряда воздуха. В конце сжатия (в. м. т.) давление воздуха равно 3,5—5 Мн/м2, а температура составляет 750—800° К. Высо­кая температура воздуха в конце сжатия обеспечивает самовос­пламенение топлива. Затем цикл повторяется.


По тем же соображениям, что и для четырехтактных дизелей, топливо в цилиндр подается с опережением в 10—20° поворота ко­ленчатого вала до в. м. т. (точка 3).


В настоящее время на судах применяют как двухтактные, так и четырехтактные дизели. Для крупнотоннажных грузовых и пас­сажирских судов основным является двухтактный двигатель. Ти­хоходные двухтактные крейцкопфного типа дизеля долговечны, отличаются высокой экономичностью, но имеют большой вес и га­бариты. При одной и той же частоте вращения и одинаковых раз­мерах цилиндров мощность двухтактного двигателя теоретически вдвое больше мощности четырехтактного. Увеличение мощности двухтактного двигателя обусловлено сгоранием вдвое большего количества топлива, чем в четырехтактном, но так как объем ра­бочего цилиндра (из-за наличия выпускных и продувочных окон) используется неполностью, а часть мощности (4—10%) затрачи­вается на приведение в действие продувочного насоса, то факти­ческое превышение мощности в двухтактном двигателе над мощ­ностью четырехтактного составляет 70—80%.


Четырехтактный двигатель при одинаковых мощности и ча­стоте вращения с двухтактным имеет большие размеры и вес. Двухтактный двигатель при одинаковых частоте вращения и числе цилиндров с четырехтактным вследствие удвоенного числа рабо­чих циклов работает более равномерно. Минимальное число ци­линдров, обеспечивающее надежный пуск для двухтактного дви­гателя — четыре, а для четырехтактного — шесть.


Отсутствие клапанов и приводов к ним у двухтактного двига­теля со щелевой продувкой упрощает его конструкцию. Однако на изготовление деталей требуются более прочные материалы, так как двухтактные двигатели работают при более высоких темпера­турных условиях.


В двухтактных двигателях очистка, продувка и зарядка све­жим воздухом цилиндра осуществляется на протяжении части одного хода, поэтому качество этих процессов ниже, чем у четы­рехтактного двигателя.

Четырехтактные двигатели удобнее в отношении повышения их мощности путем наддува. Для них используют более простую схему наддува, теплонапряженность цилиндров меньше, чем у двухтактных дизелей. Для современных четырехтактных дизелей с газотурбинным наддувом удельный эффективный расход топ­лива составляет 0,188—0,190 кг/(квт ? ч), а для двухтактных тихо­ходных дизелей с наддувом 0,204—0,210 кг/(квт?ч).

vdvizhke.ru