Схемотехника компьютерных блоков питания – Схемотехника блоков питания персональных компьютеров. — Справочные материалы — Системное администрирование — Каталог статей

Схемотехника блоков питания


Питание компьютеров и периферийных устройств

Эта глава посвящена «энергетическому интерфейсу» компьютера: в ней рассматривается, откуда берутся питающие напряжения и как их правильно подать на компоненты компьютера; куда девать высвобождающуюся тепловую энергию (иной физической работы, кроме нагревания окружающей среды, компьютер, увы, не производит). В этой главе также рассматриваются «здоровые отношения» компьютера, пользователя и питающей сети (условия их мирного сосуществования).

Схемотехника блоков питания

Блоки питания аппаратуры, предназначенные для питания от сети переменного тока, в зависимости от назначения и мощности могут быть выполнены по различным схемам. Схема простейшего блока питания с трансформаторным входом приведена на рис. 3.1.

Рис. 3.1. Блок питания с трансформаторным входом

Здесь понижающий трансформатор, работающий на частоте питающей сети 50/60 Гц, обеспечивает требуемое напряжение и гальваническую развязку питаемых цепей от сети переменного тока. Выходное напряжение может стабилизироваться непрерывным или импульсным низковольтным стабилизатором напряжения. Главный недостаток такого блока — большие габариты низкочастотного силового трансформатора, Трансформатор блока питания, рассчитанный на частоту 60 Гц (зарубежные питающие сети), на частоте 50 Гц (наши сети) может ощутимо нагреваться. Естественно, от сети постоянного тока (такие изредка встречаются) такой блок работать не может. Блоки питания с трансформаторным входом применяются при небольшой выходной мощности, чаще всего — в выносных адаптерах (старых моделей), обеспечивающих питание модемов, хабов и прочих маломощных устройств внешнего исполнения. Такие блоки довольно часто монтируются прямо на вилке питания.

В блоках питания с бестрансформаторным входом понижающий трансформатор работает на высокой частоте — в десятки и даже сотни килогерц, что позволяет уменьшить габариты и вес блока питания. В этом случае входное напряжение сразу выпрямляется и после фильтрации поступает на высокочастотный преобразователь. Высокочастотные импульсы преобразователя попадают на понижающий импульсный трансформатор, который обеспечивает гальваниче­скую развязку выходных и входных цепей. Преобразователь чаще всего делают управляемым, так что на него возлагаются еще и функции регулирующего элемента стабилизатора напряжения. Управляя шириной импульса, можно изменять величину энергии, поступающей через трансформатор в выпрямитель, следовательно, регулировать (стабилизировать) его выходное напряжение. В зависимости от мощности стабилизатор строится по однотактной или двухтактной схеме. Однотактная схема несколько проще (рис. 3.2), ее применяют в блоках питания, где мощность обычно не превышает сотни ватт (например, в мониторах). В мониторах частоту импульсного блока обычно синхронизируют с частотой генератора строчной развертки во избежание видимых помех. В настоящее время выпускается широкий ассортимент управляющих микросхем со встроенным ключевым транзистором и развитыми функциями защиты и управления. Блоки питания на их основе получаются предельно простыми и компактными; маломощные блоки могут размещаться прямо в вилках-адаптерах.



Рис. 3.2. Однотактный блок питания (СФ — сетевой фильтр, Ф — формирователь импульсов; ОС — усилитель обратной связи)

Двухтактные преобразователи сложнее, но они обеспечивают большую выходную мощность. Такие блоки широко используются в блоках питания PC (см. 3.2).

Если блок питания должен вырабатывать несколько выходных напряжений, преобразователь может стабилизировать лишь одно из них. Остальные напряжения могут быть стабилизированы дополнительными выходными стабилизаторами, но часто их оставляют нестабилизированными.

При этом появляется взаимозависимость: чем больше нагрузка по основной (стабилизированной) цепи, тем выше напряжения на остальных шинах.

Импульсные блоки питания имеют малые габариты, но компактный трансформатор представляет собой довольно (это кому как – ДДВ) сложное изделие.

Импульсные помехи, которые могут проникать как в питаемые, так и в питающие цепи, подавляют тщательно (ну очень тщательно – ДДВ) разработанными фильтрами. Внешнее излучение подавляется металлическим экраном, в который заключают весь блок. •

Импульсные блоки питания не критичны к частоте сети (50 или 60 Гц), могут работать от постоянного тока (в принципе, но не рассматриваемые – ДДВ) и часто в широком диапазоне входных напряжений (ну – ну – ДДВ). Современные блоки, у которых указано свойство Autoswitching Power Supply, работают в диапазоне 110 — 230 В без переключателя напряжения. Такие блоки применяются в большинстве современных мониторов.

 

ВНИМАНИЕ__________________________________________________________________Самый тяжелый режим функционирования элементов блока питания возникает в момент включения. После выключения блока питания (любой конструкции) включать его повторно рекомендуется не раньше, чем через 10 с. Несоблюдение этой рекомендации может сократить жизнь блока питания._________________________________________________

 

Наличие выпрямителя и накопительного конденсатора на входе бестрансформаторного блока питания обусловливает ярко выраженную (ну очень ярко, а динамика так уж… – ДДВ) динамическую нелинейность входной цепи. На рис. 3.3 приведены осциллограммы напряжений и потребляемого тока, которые иллюстрируют эту нелинейность (“от души” – ДДВ). Пока Мгновенное значение напряжения ниже напряжения на накопительном конденсаторе выпрямителя, ток практически не потребляется. На верхушках синусоиды ток резко возрастает, так что в его спектре очень сильно выражена 3-я гармоника. Для питающей сети такой характер нагрузки нежелателен, но с ним приходится мириться. Конечно, нелинейность имеется и в трансформаторном блоке питания, но она несколько сглаживается низкочастотным трансформатором.

3.2. Блок питания PC

Блок питания PC обеспечивает напряжениями постоянного тока системный блок со всеми его сложными и часто привередливыми устройствами. С самых первых моделей PC здесь применяется двухтактная схема преобразователя с бестрансформаторным входом, без революционных изменений эта схема дошла и до наших дней (ее упрощенный вариант приведен на рис. 3.4). Входное напряжение после высокочастотного фильтра выпрямляется и поступает на накопительные конденсаторы (С1 и С2), являющиеся главными хранителями энергии на случай кратковременного провала питающего напряжения. Мощные высоковольтные транзисторы Т1 и Т2 и конденсаторы С1 и С2 образуют полумостовую схему генератора-преобразователя, нагрузкой которого является высокочастотный импульсный силовой трансформатор Тр2. Этот трансформатор обеспечивает и гальваническую развязку выходных и входных цепей. Преобразователь является регулирующим элементом стабилизатора напряжения основного источника: +3,3 В для АТХ (и более новых конструктивов) или +5 В (PC/AT). Остальные напряжения могут быть стабилизированы дополнительными выходными стабилизаторами, но чаще их оставляют нестабилизированными. При этом чем больше нагрузка блока по основной (стабилизированной) цепи, тем выше напряжения на остальных шинах. -Убедиться в этом просто — понаблюдайте за вентилятором блока питания, который питается от цепи +12 В, изменяя нагрузку по основной цепи, например подключая и отключая системную плату (ничего себе — эксперимент – ДДВ).

Рис. 3.4. Двухтактный блок питания: СФ — сетевой фильтр, УУ — устройство управления, Ф — формирователи импульсов, Тр1 — трансформатор развязки цепей управления, Тр2 — силовой трансформатор

При подключении нагрузки скорость вращения вентилятора повышается. Это происходит потому, что с повышением тока нагрузки преобразователь вырабатывает более широкие импульсы, а выходное напряжение нестабилизированных выпрямителей при постоянной нагрузке пропорционально ширине этих импульсов. По этой причине уровни напряжения на не основных выходах большинства блоков питания соответствуют номиналам лишь при номинальной и сбалансированной нагрузке. Однако, как правило, потребители этих напряжений не требуют особой точности напряжения, а стабильность обеспечивается относительным постоянством нагрузки основной цепи.

Двухтактные блоки питания многих поколений PC строились на основе управляющей микросхемы TL494CN или ее аналогов. Эта микросхема содержит встроенный генератор и управляет ключами выходных транзисторов, воспринимая сигнал обратной связи из цепи +5 В и сигнал отключения по токовой перегрузке. Для определения перегрузки по току последовательно с первичной обмоткой силового трансформатора включают еще и трансформатор тока (на рис. 3.4 для упрощения не показан), с выхода которого сигнал через пороговую схему подается на вход управляющей микросхемы. Интересная особенность блоков питания, построенных на микросхеме TL494CN, заключается в идеологии управления выходными ключами. Вопреки ожиданиям, связанным с эксплуатацией импульсных блоков питания, например ЕС ЭВМ, эта микросхема управляет запиранием выходных ключей, а не активным отпиранием. Благодаря такому подходу упрощается процесс запуска источника (в тех же блоках ЕС для запуска применялся источник служебного напряжения). При включении блока питания PC симметричный мультивибратор, образованный выходными транзисторами совместно с трансформатором, начинает плавно возбуждаться. Когда выходное напряжение цепи +12 В, от которого питается и управляющая микросхема, достигает уровня нескольких вольт, микросхема приступает к исполнению своих сдерживающих регулировочных обязанностей и блок выходит в рабочий режим, управляемый генератором микросхемы. Заметим, что некоторые блоки не запускаются без нагрузки.

Для мощных блоков питания обеспечить работу в широком диапазоне питающих напряжений довольно сложно, и на них устанавливают переключатель входного напряжения:

  • 230 В — напряжение в диапазоне 180-265 В;
  • 115 В — напряжение в диапазоне 90-135 В.

Переключение диапазона входного напряжения легко осуществляется переключателем, который преобразует мостовую схему выпрямителя в схему выпрямителя с удвоением для питания от сети 115 В. При включении в сеть 220 В блока, предназначенного для работы при напряжении 110 В, часто выходят из строя ключевые транзисторы или диоды. Блоки, у которых указано свойство Autoswitching Power Supply, работают в диапазоне 110-230 В без переключателя. В них применяют силовые компоненты с большим запасом по допустимым напряжению и току.

 

_________________________________________________________________

ВНИМАНИЕ

Встречаются и «упрощенные» блоки питания (китайского производства), у которых сетевой фильтр отсутствует (конденсаторов нет, а дроссели заменены перемычками). Эта экономия оборачивается большим уровнем помех, попадающих от данного блока в сеть, и повышенной чувствительностью компьютера к помехам из сети. Эти помехи могут приводить к сбоям, зависаниям или внезапным перезагрузкам компьютера и даже к самопроизвольному включению компьютеров с блоком питания АТХ (см. далее).__________________________________________ ___________________________

 

Поскольку большинство цепей блока питания находится под высоким напряжением, ремонт блока требует соответствующей квалификации и знаний техники безопасности. Не вдаваясь в подробности, можно дать несколько практических рекомендаций по ремонту блока:

  • Для проверки и ремонта блока питания полезно иметь нагрузку — мощные| резисторы — по крайней мере, для основной цепи (+3,3 или +5 В). Резистор 5 Ом, 5 Вт обеспечит ток, вполне достаточный для проверки работоспособности. Использование в качестве нагрузки системной платы или накопителей чревато их выходом из строя в процессе ремонта блока.
  • Если блок питания не включается, отключите его от сети и разрядите накопительные конденсаторы (С1 и С2 на рис. 3.4). После этого проверьте омметром диоды и транзисторы — чаще всего выходят из строя высоковольтные диоды и транзисторы. Заменять неисправные элементы желательно однотипными.
  • После замены неисправных элементов не торопитесь подавать питание — какая-нибудь незамеченная «мелочь» может снова вывести из строя замененные детали. Не подключая сетевое напряжение, подайте от внешнего источника напряжение 10-12 В на шину +12 В. Если генератор управляющей микросхемы исправен, он «заведется», а по форме импульсов на базах выходных ключевых транзисторов можно судить об исправности большинства цепей формирования управляющих импульсов или о характере неисправности. Питание от сети на ремонтируемый блок следует подавать только после проверки его силовых цепей (диодов и транзисторов) и базовых цепей выходных ключей.

Блок питания PC обычно имеет стандартный конструктив и набор жгутов с разъемами питания системной платы и периферийных устройств. На задней стенке блока устанавливается входной разъем питающего кабеля, а также может присутствовать транзитный выходной разъем для питания монитора. Подключение монитора к этому разъему не только сокращает количество вилок, включаемых в розетку питания, но и обеспечивает связь «земель» монитора и системного блока. В ряде типов блоков питания транзитный разъем может и отсутствовать. При этом монитор включают в дополнительную розетку, и хорошо, если при этом соблюдают правила заземления. На задней стенке устанавливается также переключатель диапазона питающего напряжения, если таковой присутствует в блоке. Выключатель питания в старых конструктивах располагался на боковой или задней стенке блока питания» Позже его вынесли с блока питания на лицевую панель корпуса и стали присоединять к блоку кабелем со съемными контактами. К этому кабелю, проходящему через весь системный блок, следует относиться со вниманием, поскольку он является источником и опасности, и помех. В конструктиве АТХ главный выключатель питания вернулся на блок питания, а с передней панели блоком питания управляют с помощью кнопки и низковольтных цепей системной платы. Таким образом, провода с напряжением питающей сети удалось убрать из корпуса компьютера, и теперь высокое напряжение присутствует только внутри корпуса блока питания.

Мощность блока питания зависит от назначения корпуса системного блока и лежит в диапазоне от 150-450 Вт для обычных компьютеров до 350-750 Вт для мощных серверов. В настольных компьютерах основными потребителями мощности являются системная плата с процессором и памятью, а также графический акселератор. Чем выше тактовые частоты, тем «прожорливее» эти компоненты, и мощность блока питания выбирается именно, под них. С учетом «аппетитов» процессоров 6-8-го поколений мощность 350 Вт не является излишней. У серверов значительное потребление может иметь подсистема хранения данных.

Вентилятор блока питается от цепи +12 В и обеспечивает охлаждение всего системного блока. В традиционных блоках питания вентилятор работает на отсос воздуха из корпуса системного блока. В современных качественных блоках питания устанавливают так называемое устройство Fan Processor, регулирующее скорость вращения вентилятора в зависимости от температуры. Это позволяет увеличить ресурс вентилятора и снижает шум при нормальной температуре окружающего воздуха.

stydopedia.ru

Принцип работы компьютерного блока питания

Статья написана на основе книги А.В.Головкова и В.Б Любицкого»БЛОКИ ПИТАНИЯ ДЛЯ СИСТЕМНЫХ МОДУЛЕЙ ТИПА IBM PC-XT/AT» Материал взят с сайта интерлавка. Переменное напряжение сети подается через сетевой выключатель PWR SW через сетевой предохранитель F101 4А, помехоподавляющие фильтры, образованные элементами С101, R101, L101, С104, С103, С102 и дроссели И 02, L103 на: 
• выходной трехконтактный разъем, к которому может подстыковываться кабель питания дисплея;
• двухконтактный разъем JP1, ответная часть которого находится на плате.
С разъема JP1 переменное напряжение сети поступает на:
• мостовую схему выпрямления BR1 через терморезистор THR1;
• первичную обмотку пускового трансформатора Т1.

На выходе выпрямителя BR1 включены сглаживающие емкости фильтра С1, С2. Терморезистор THR ограничивает начальный бросок зарядного тока этих конденсаторов. Переключатель 115V/230V SW обеспечивает возможность питания импульсного блока питания как от сети 220-240В, так и от сети 110/127 В.

Высокооомные резисторы R1, R2, шунтирующие конденсаторы С1, С2 являются симметрирующими (выравнивают напряжения на С1 и С2), а также обеспечивают разрядку этих конденсаторов после выключения импульсного блока питания из сети. Результатом работы входных цепей является появление на шине выпрямленного напряжения сети постоянного напряжения Uep, равного +310В, с некоторыми пульсациями. В данном импульсном блоке питания используется схема запуска с принудительным (внешним) возбуждением, которая реализована на специальном пусковом трансформаторе Т1, на вторичной обмотке которого после включения блока питания в сеть появляется переменное напряжение с частотой питающей сети. Это напряжение выпрямляется диодами D25, D26, которые образуют со вторичной обмоткой Т1 двухполупериодную схему выпрямления со средней точкой. СЗО — сглаживающая емкость фильтра, на которой образуется постоянное напряжение, используемое для питания управляющей микросхемы U4. 

В качестве управляющей микросхемы в данном импульсном блоке питания традиционно используется ИМС TL494.

Питающее напряжение с конденсатора СЗО подается на вывод 12 U4. В результате на выводе 14 U4 появляется выходное напряжение внутреннего опорного источника Uref=-5B, запускается внутренний генератор пилообразного напряжения микросхемы, а на выводах 8 и 11 появляются управляющие напряжения, которые представляют собой последовательности прямоугольных импульсов с отрицательными передними фронтами, сдвинутые друг относительно друга на половину периода. Элементы С29, R50, подключенные к выводам 5 и 6 микросхемы U4 определяют частоту пилообразного напряжения, вырабатываемого внутренним генератором микросхемы. 

Согласующий каскад в данном импульсном блоке питания выполнен по бестранзисторной схеме с раздельным управлением. Напряжение питания с конденсатора СЗО подается в средние точки первичных обмоток управляющих трансформаторов Т2, ТЗ. Выходные транзисторы ИМС U4 выполняют функции транзисторов согласующего каскада и включены по схеме с ОЭ. Эмиттеры обоих транзисторов (выводы 9 и 10 микросхемы) подключены к «корпусу». Коллекторными нагрузками этих транзисторов являются первичные полуобмотки управляющих трансформаторов Т2, ТЗ, подключенные к выводам 8, 11 микросхемы U4 (открытые коллекторы выходных транзисторов). Другие половины первичных обмоток Т2, ТЗ с подключенными к ним диодами D22, D23 образуют цепи размагничивания сердечников этих трансформаторов.

Трансформаторы Т2, ТЗ управляют мощными транзисторами полумостового инвертора. 

Переключения выходных транзисторов микросхемы вызывают появление импульсных управляющих ЭДС на вторичных обмотках управляющих трансформаторов Т2, ТЗ. Под действием этих ЭДС силовые транзисторы Q1, Q2 попеременно открываются с регулируемыми паузами («мертвыми зонами»). Поэтому через первичную обмотку силового импульсного трансформатора Т5 протекает переменный ток в виде пилообразных токовых импульсов. Это объясняется тем, что первичная обмотка Т5 включена в диагональ электрического моста, одно плечо которого образовано транзисторами Q1, Q2, а другое — конденсаторами С1, С2. Поэтому при открывании какого-либо из транзисторов Q1, Q2 первичная обмотка Т5 оказывается подключена к одному из конденсаторов С1 или С2, что и обуславливает протекание через нее тока в течение всего времени, пока открыт транзистор.
Демпферные диоды D1, D2 обеспечивают возврат энергии, запасенной в индуктивности рассеяния первичной обмотки Т5 за время закрытого состояния транзисторов Q1, Q2 обратно в источник (рекуперация).

Цепочка С4, R7, шунтирующая первичную обмотку Т5, способствует подавлению высокочастотных паразитных колебательных процессов, которые возникают в контуре, образованном индуктивностью первичной обмотки Т5 и ее меж-витковой емкостью, при закрываниях транзисторов Q1, Q2, когда ток через первичную обмотку резко прекращается. 

Конденсатор СЗ, включенный последовательно с первичной обмоткой Т5, ликвидирует постоянную составляющую тока через первичную обмотку Т5, исключая тем самым нежелательное подмагничивание его сердечника.

Резисторы R3, R4 и R5, R6 образуют базовые делители для мощных транзисторов Q1, Q2 соответственно и обеспечивают оптимальный режим их переключения с точки зрения динамических потерь мощности на этих транзисторах. 

Протекание переменного тока через первичную обмотку Т5 обуславливает наличие знакопеременных прямоугольных импульсных ЭДС на вторичных обмотках этого трансформатора.
Силовой трансформатор Т5 имеет три вторичные обмотки, каждая из которых имеет вывод от средней точки.
Обмотка IV обеспечивает получение выходного напряжения +5В. Диодная сборка SD2 (полумост) образует с обмоткой IV двухполупериодную схему выпрямления со средней точкой (средняя точка обмотки IV заземлена).
Элементы L2, СЮ, С11, С12 образуют сглаживающий фильтр в канале +5В.
Для подавления паразитных высокочастотных колебательных процессов, возникающих при коммутациях диодов сборки SD2, эти диоды за-шунтированы успокаивающими RC-цепочками С8, R10nC9, R11.

Диоды сборки SD2 представляют собой диоды с барьером Шоттки, чем достигается необходимое быстродействие и повышается КПД выпрямителя. 

Обмотка III совместно с обмоткой IV обеспечивает получение выходного напряжения +12В вместе с диодной сборкой (полумостом) SD1. Эта сборка образует с обмоткой III двухполупериодную схему выпрямления со средней точкой. Однако средняя точка обмотки III не заземлена, а подключена к шине выходного напряжения +5В. Это даст возможность использовать диоды Шоттки в канале выработки +12В, т.к. обратное напряжение, прикладываемое к диодам выпрямителя при таком включении, уменьшается до допустимого для диодов Шоттки уровня.

Элементы L1, С6, С7 образуют сглаживающий фильтр в канале +12В. 

Резисторы R9, R12 предназначены для ускорения разрядки выходных конденсаторов шин +5В и +12В после выключения ИБП из сети.
RC-цепочка С5, R8 предназначена для подавления колебательных процессов, возникающих в паразитном контуре, образованном индуктивностью обмотки III и ее межвитковой емкостью.
Обмотка И с пятью отводами обеспечивает получение отрицательных выходных напряжений -5В и-12В.
Два дискретных диода D3, D4 образуют полумост двухполупериодного выпрямления в канале выработки -12В, а диоды D5, D6 — в канале -5В.
Элементы L3, С14 и L2, С12 образуют сглаживающие фильтры для этих каналов.
Обмотка II, также как и обмотка III, зашунтиро-вана успокоительной RC-цепочкой R13, С13.

Средняя точка обмотки II заземлена. 

Стабилизация выходных напряжений осуществляются разными способами в разных каналах.
Отрицательные выходные напряжения -5В и -12В стабилизируются при помощи линейных интегральных трехвыводных стабилизаторов U4 (типа 7905) и U2 (типа 7912).
Для этого на входы этих стабилизаторов подаются выходные напряжения выпрямителей с конденсаторов С14, С15. На выходных конденсаторах С16, С17 получаются стабилизированные выходные напряжения -12В и -5В.
Диоды D7, D9 обеспечивают разрядку выходных конденсаторов С16, С17 через резисторы R14, R15 после выключения импульсного блока питания из сети. Иначе эти конденсаторы разряжались бы через схему стабилизаторов, что нежелательно.
Через резисторы R14, R15 разряжаются и конденсаторы С14, С15.

Диоды D5, D10 выполняют защитную функцию в случае пробоя выпрямительных диодов. 

Если хотя бы один из этих диодов (D3, D4, D5 или D6) окажется «пробитым», то в отсутствие диодов D5, D10 ко входу интегрального стабилизатора U1 (или U2) прикладывалось бы положительное импульсное напряжение, а через электролитические конденсаторы С14 или С15 протекал бы переменный ток, что привело бы к выходу их из строя.
Наличие диодов D5, D10 в этом случае устраняет возможность возникновения такой ситуации, т.к. ток замыкается через них.
Например, в случае, если «пробит» диод D3, положительная часть периода, когда D3 должен быть закрыт, ток замкнется по цепи: к-а D3 — L3 -D7- D5- «корпус».
Стабилизация выходного напряжения +5В осуществляется методом ШИМ. Для этого к шине выходного напряжения +5В подключен измерительный резистивный делитель R51, R52. Сигнал, пропорциональный уровню выходного напряжения в канале +5В, снимается с резистора R51 и подается на инвертирующий вход усилителя ошибки DA3 (вывод 1 управляющей микросхемы). На прямой вход этого усилителя (вывод 2) подается опорный уровень напряжения, снимаемый с резистора R48, входящего в делитель VR1, R49, R48, который подключен к выходу внутреннего опорного источника микросхемы U4 Uref=+5B. При изменениях уровня напряжения на шине +5В под воздействием различных дестабилизирующих факторов происходит изменение величины рассогласования (ошибки) между опорным и контролируемым уровнями напряжения на входах усилителя ошибки DA3. В результате ширина (длительность) управляющих импульсов на выводах 8 и 11 микросхемы U4 изменяется таким образом, чтобы вернуть отклонившееся выходное напряжение +5В к номинальному значению (при уменьшении напряжения на шине +5В ширина управляющих импульсов увеличивается, а при увеличении этого напряжения -уменьшается).
Устойчивая (без возникновения паразитной генерации) работа всей петли регулирования обеспечивается за счет цепочки частотно-зависимой отрицательной обратной связи, охватывающей усилитель ошибки DA3. Эта цепочка включается
между выводами 3 и 2 управляющей микросхемы U4 (R47, С27).

Выходное напряжение +12В в данном ИБП не стабилизируется. 

Регулировка уровня выходных напряжений в данном ИБП производится только для каналов +5В и +12В. Эта регулировка осуществляется за счет изменения уровня опорного напряжения на прямом входе усилителя ошибки DA3 при помощи подстроечного резистора VR1.
При изменении положения движка VR1 в процессе настройки ИБП будет изменяться в некоторых пределах уровень напряжения на шине +5В, а значит и на шине +12В, т.к. напряжение с шины +5В подается в среднюю точку обмотки III.

Комбинированная зашита данного ИБП включает в себя: 

• ограничивающую схему контроля ширины управляющих импульсов;
• полную схему защиты от КЗ в нагрузках;
• неполную схему контроля выходного перенапряжения (только на шине +5В).

Рассмотрим каждую из этих схем. 

Ограничивающая схема контроля использует в качестве датчика трансформатор тока Т4, первичная обмотка которого включена последовательно с первичной обмоткой силового импульсного трансформатора Т5.
Резистор R42 является нагрузкой вторичной обмотки Т4, а диоды D20, D21 образуют двухпо-лупериодную схему выпрямления знакопеременного импульсного напряжения, снимаемого с нагрузки R42.

Резисторы R59, R51 образуют делитель. Часть напряжения сглаживается конденсатором С25. Уровень напряжения на этом конденсаторе пропорционально зависит от ширины управляющих импульсов на базах силовых транзисторов Q1, Q2. Этот уровень через резистор R44 подается на инвертирующий вход усилителя ошибки DA4 (вывод 15 микросхемы U4). Прямой вход этого усилителя (вывод 16) заземлен. Диоды D20, D21 включены так, что конденсатор С25 при протекании тока через эти диоды заряжается до отрицательного (относительно общего провода) напряжения. 

В нормальном режиме работы, когда ширина управляющих импульсов не выходит за допустимые пределы, потенциал вывода 15 положителен, благодаря связи этого вывода через резистор R45 с шиной Uref. При чрезмерном увеличении ширины управляющих импульсов по какой-либо причине, отрицательное напряжение на конденсаторе С25 возрастает, и потенциал вывода 15 становится отрицательным. Это приводит к появлению выходного напряжения усилителя ошибки DA4, которое до этого было равно 0В. Дальнейший рост ширины управляющих импульсов приводит к тому, что управление переключениями ШИМ-ком-паратора DA2 передается к усилителю DA4, и последующего за этим увеличения ширины управляющих импульсов уже не происходит (режим ограничения), т.к. ширина этих импульсов перестает зависеть от уровня сигнала обратной связи на прямом входе усилителя ошибки DA3. 

Схема защиты от КЗ в нагрузках условно может быть разделена на защиту каналов выработки положительных напряжений и защиту каналов выработки отрицательных напряжений, которые схемотехнически реализованы примерно одинаково.
Датчиком схемы защиты от КЗ в нагрузках каналов выработки положительных напряжений (+5В и +12В) является диодно-резистивный делитель D11, R17, подключенный между выходными шинами этих каналов. Уровень напряжения на аноде диода D11 является контролируемым сигналом. В нормальном режиме работы, когда напряжения на выходных шинах каналов +5В и +12В имеют номинальные величины, потенциал анода диода D11 составляет около +5,8В, т.к. через делитель-датчик протекает ток с шины +12В на шину +5В по цепи: шина +12В — R17- D11 — шина +56.

Контролируемый сигнал с анода D11 подается на резистивный делитель R18, R19. Часть этого напряжения снимается с резистора R19 и подается на прямой вход компаратора 1 микросхемы U3 типа LM339N. На инвертирующий вход этого компаратора подается опорный уровень напряжения с резистора R27 делителя R26, R27, подключенного к выходу опорного источника Uref=+5B управляющей микросхемы U4. Опорный уровень выбран таким, чтобы при нормальном режиме работы потенциал прямого входа компаратора 1 превышал бы потенциал инверсного входа. Тогда выходной транзистор компаратора 1 закрыт, и схема ИБП нормально функционирует в режиме ШИМ. 

В случае КЗ в нагрузке канала +12В, например, потенциал анода диода D11 становится равным 0В, поэтому потенциал инвертирующего входа компаратора 1 станет выше, чем потенциал прямого входа, и выходной транзистор компаратора откроется. Это вызовет закрывание транзистора Q4, который нормально открыт током базы, протекающим по цепи: шина Upom — R39 — R36 -б-э Q4 — «корпус».

Открывание выходного транзистора компаратора 1 подключает резистор R39 к «корпусу», и поэтому транзистор Q4 пассивно закрывается нулевым смещением. Закрывание транзистора Q4 влечет за собой зарядку конденсатора С22, который выполняет функцию звена задержки срабатывания защиты. Задержка необходима из тех соображений, что в процессе выхода ИБП на режим, выходные напряжения на шинах +5В и +12В появляются не сразу, а по мере зарядки выходных конденсаторов большой емкости. Опорное же напряжение от источника Uref, напротив, появляется практически сразу же после включения ИБП в сеть. Поэтому в пусковом режиме компаратор 1 переключается, его выходной транзистор открывается, и если бы задерживающий конденсатор С22 отсутствовал, то это привело бы к срабатыванию защиты сразу при включении ИБП в сеть. Однако в схему включен С22, и срабатывание защиты происходит лишь после того как напряжение на нем достигнет уровня, определяемого номиналами резисторов R37, R58 делителя, подключенного к шине Upom и являющегося базовым для транзистора Q5. Когда это произойдет, транзистор Q5 открывается, и резистор R30 оказывается подключен через малое внутреннее сопротивление этого транзистора к «корпусу». Поэтому появляется путь для протекания тока базы транзистора Q6 по цепи: Uref — э-6 Q6 — R30 — к-э Q5 -«корпус». 

Транзистор Q6 открывается этим током до насыщения, в результате чего напряжение Uref=5B, которым запитан по эмиттеру транзистор Q6, оказывается приложенным через его малое внутреннее сопротивление к выводу 4 управляющей микросхемы U4. Это, как было показано ранее, ведет к останову работы цифрового тракта микросхемы, пропаданию выходных управляющих импульсов и прекращению переключении силовых транзисторов Q1, Q2, т.е. к защитному отключению. КЗ в нагрузке канала +5В приведет к тому, что потенциал анода диода D11 будет составлять всего около +0.8В. Поэтому выходной транзистор компаратора (1) окажется открыт, и произойдет защитное отключение.
Аналогичным образом построена защита от КЗ в нагрузках каналов выработки отрицательных напряжений (-5В и -12В) на компараторе 2 микросхемы U3. Элементы D12, R20 образуют диодно-резистивный делитель-датчик, подключаемый между выходными шинами каналов выработки отрицательных напряжений. Контролируемым сигналом является потенциал катода диода D12. При КЗ в нагрузке канала -5В или -12В, потенциал катода D12 повышается (от -5,8 до 0В при КЗ в нагрузке канала -12В и до -0,8В при КЗ в нагрузке канала -5В). В любом из этих случаев открывается нормально закрытый выходной транзистор компаратора 2, что и обуславливает срабатывание защиты по приведенному выше механизму. При этом опорный уровень с резистора R27 подается на прямой вход компаратора 2, а потенциал инвертирующего входа определяется номиналами резисторов R22, R21. Эти резисторы образуют двуполярно запитанный делитель (резистор R22 подключен к шине Uref=+5B, а резистор R21 — к катоду диода D12, потенциал которого в нормальном режиме работы ИБП, как уже отмечалось, составляет -5,8В). Поэтому потенциал инвертирующего входа компаратора 2 в нормальном режиме работы поддерживается меньшим, чем потенциал прямого входа, и выходной транзистор компаратора будет закрыт.

Защита от выходного перенапряжения на шине +5В реализована на элементах ZD1, D19, R38, С23. Стабилитрон ZD1 (с пробивным напряжением 5,1В) подключается к шине выходного напряжения +5В. Поэтому, пока напряжение на этой шине не превышает +5,1 В, стабилитрон закрыт, а также закрыт транзистор Q5. В случае увеличения напряжения на шине +5В выше +5,1В стабилитрон «пробивается», и в базу транзистора Q5 течет отпирающий ток, что приводит к открыванию транзистора Q6 и появлению напряжения Uref=+5B на выводе 4 управляющей микросхемы U4, т.е. к защитному отключению. Резистор R38 является балластным для стабилитрона ZD1. Конденсатор С23 предотвращает срабатывание защиты при случайных кратковременных выбросах напряжения на шине +5В (например, в результате установления напряжения после скачкообразного уменьшения тока нагрузки). Диод D19 является развязывающим. 

Схема образования сигнала PG в данном импульсном блоке питания является двухфункциональной и собрана на компараторах (3) и (4) микросхемы U3 и транзисторе Q3. 

Схема построена на принципе контроля наличия переменного низкочастотного напряжения на вторичной обмотке пускового трансформатора Т1, которое действует на этой обмотке лишь при наличии питающего напряжения на первичной обмотке Т1, т.е. пока импульсный блок питания включен в питающую сеть.
Практически сразу после включения ИБП в питающую сеть появляется вспомогательное напряжение Upom на конденсаторе СЗО, которым запитывается управляющая микросхема U4 и вспомогательная микросхема U3. Кроме того, переменное напряжение со вторичной обмотки пускового трансформатора Т1 через диод D13 и то-коограничивающий резистор R23 заряжает конденсатор С19. Напряжением с С19 запитывается резистивный делитель R24, R25. С резистора R25 часть этого напряжения подается на прямой вход компаратора 3, что приводит к закрыванию его выходного транзистора. Появляющееся сразу вслед за этим выходное напряжение внутреннего опорного источника микросхемы U4 Uref=+5B за-питывает делитель R26, R27. Поэтому на инвертирующий вход компаратора 3 подается опорный уровень с резистора R27. Однако этот уровень выбран меньшим, чем уровень на прямом входе, и поэтому выходной транзистор компаратора 3 остается в закрытом состоянии. Поэтому начинается процесс зарядки задерживающей емкости С20 по цепи: Upom — R39 — R30 — С20 — «корпус».
Растущее по мере зарядки конденсатора С20 напряжение подается на инверсный вход 4 микросхемы U3. На прямой вход этого компаратора подается напряжение с резистора R32 делителя R31, R32, подключенного к шине Upom. Пока напряжение на заряжающемся конденсаторе С20 не превышает напряжения на резисторе R32, выходной транзистор компаратора 4 закрыт. Поэтому в базу транзистора Q3 протекает открывающий ток по цепи: Upom — R33 — R34 — 6-э Q3 — «корпус».
Транзистор Q3 открыт до насыщения, а сигнал PG, снимаемый с его коллектора, имеет пассивный низкий уровень и запрещает запуск процессора. За это время, в течение которого уровень напряжения на конденсаторе С20 достигает уровня на резисторе R32, импульсный блок питания успевает надежно выйти в номинальный режим работы, т.е. все его выходные напряжения появляются в полном объеме.
Как только напряжение на С20 превысит напряжение, снимаемое с R32, компаратор 4 переключится, него выход ной транзистор откроется.
Это повлечет за собой закрывание транзистора Q3, и сигнал PG, снимаемый с его коллекторной нагрузки R35, становится активным (Н-уровня) и разрешает запуск процессора.
При выключении импульсного блока питания из сети на вторичной обмотке пускового трансформатора Т1 переменное напряжение исчезает. Поэтому напряжение на конденсаторе С19 быстро уменьшается из-за малой емкости последнего (1 мкф). Как только падение напряжения на резисторе R25 станет меньше, чем на резисторе R27, компаратор 3 переключится, и его выходной транзистор откроется. Это повлечет за собой защитное отключение выходных напряжений управляющей микросхемы U4, т.к. откроется транзистор Q4. Кроме того, через открытый выходной транзистор компаратора 3 начнется процесс ускоренной разрядки конденсатора С20 по цепи: (+)С20 — R61 — D14 — к-э выходного транзистора компаратора 3 — «корпус».

Как только уровень напряжения на С20 станет меньше, чем уровень напряжения на R32, компаратор 4 переключится, и его выходной транзистор закроется. Это повлечет за собой открывание транзистора Q3 и переход сигнала PG в неактивный низкий уровень до того, как начнут недопустимо уменьшаться напряжения на выходных шинах ИБП. Это приведет к инициализации сигнала системного сброса компьютера и к исходному состоянию всей цифровой части компьютера. 

Оба компаратора 3 и 4 схемы выработки сигнала PG охвачены положительными обратными связями с помощью резисторов R28 и R60 соответственно, что ускоряет их переключение.
Плавный выход на режим в данном ИБП традиционно обеспечивается при помощи формирующей цепочки С24, R41, подключенной к выводу 4 управляющей микросхемы U4. Остаточное напряжение на выводе 4, определяющее максимально возможную длительность выходных импульсов, задается делителем R49, R41.
Питание двигателя вентилятора осуществляется напряжением с конденсатора С14 в канале выработки напряжения -12В через дополнительный развязывающий Г-образный фильтр R16, С15.

radioskot.ru

Использование блока питания компьютера АТХ в радиолюбительской практике — ИСТОЧНИКИ ПИТАНИЯ — radio-bes

При разработке какой-либо конструкции, потребляющей значительную мощность существенная проблема — это источник питания. Никто не хочет наматывать силовые трансформаторы. Да и тяжел и громоздок получится блок питания. Самостоятельно делать мощный импульсный блок, — тоже сомнительное удовольствие, потому что и времени займет больше чем на всю конструкцию и ошибки или просто недостаточная аккуратность в намотке импульсного трансформатора быстренько все усилия сводит к нулю.

В общем, хотелось бы приобрести готовый импульсный блок, и желательно недорого. В таком случае оптимальным вариантом может быть блок с разборки старого ПК типа АТХ. Но не всем удается такой блок запустить. Необходимо знать его выходные параметры. К тому же блок с разборки может нуждаться в ремонте.

Ниже изложена полезная информация для тех кто решит использовать блок питания АТХ для питания своей «самоделки» или покупной аппаратуры, рассчитанной на питание от автомобильной бортовой сети, например, автомобильной радиостанции.


Блок питания ПК типа АТХ предназначен для формирования постоянных питающих напряжений +3.3V, +5V, +12V, -5V, -12V. Он выполнен в виде почти самостоятельного модуля в металлическом корпусе, из которого выведен жгут проводов с разъемами. На задней стенке есть разъем для подключения сетевого шнура (220V), еще там может быть переключатель-фишка 110/220V и (или) механический клавишный выключатель для полного отключения блока от сети. Блоки АТХ выпускаются самых разных мощностей от 150W до 840W и более. Чаще всего встречаются на 200-400W. Токи нагрузок выходных напряжений, соответственно, зависят от мощности и у разных моделей блоков питания могут отличаться даже при равной суммарной мощности блока. Но это не представляет большой проблемы, — практически на каждом блоке АТХ есть достаточно прочно наклеенная этикетка, на которой указаны его параметры по выходным токам. Например, блок ISO-450PP максимальной выходной мощностью 350W выдает ток:

20А по напряжению +3.3V,

32А по напряжению +5V,

16А по напряжению +12V,

0,5А по напряжению -5V,

0.5А по напряжению -12V.

Таким образом, даже выбирая блок с разборки (из кучи) можно по этикетке подобрать подходящий.

 


Рис. 1  Компьютерный БП ATX (увеличить схему)
 


Принципиальная схема «типового» блока питания АТХ мощностью 200W приведена на рисунке 1. Функционально условно схему можно разделить на пять участков. Первый участок представляет собой обычную схему сетевого фильтра и мостового выпрямителя на диодах D21-D24 для получения постоянного напряжения для питания импульсного преобразователя напряжения. Практически это импульсный источник питания с ШИМ на основе микросхемы TL494 и двухтактного выходного каскада на мощных ключевых транзисторах Q1 и Q2.

Но для дежурного питания в схеме есть отдельный маломощный импульсный блок питания (участок 2), — источник дежурного напряжения +5VSB, которое используется компьютером в выключенном состоянии. Этот узел выполнен по схеме однотакт-ного преобразователя на транзисторе Q12 и трансформаторе Т6. Питание на этот узел поступает с выхода сетевого выпрямителя. Вторичная обмотка Т6 с отводом и двумя диодными выпрямителями. Выпрямитель на диоде D30 служит для создания напряжения питания генератора   микросхемы TL494. Второй выпрямитель на D28 служит для получения напряжения 5V для дежурного питания схемы ПК. 5V получается с помощью стабилизатора IC3. Схема дежурного блока питания интересна тем, что она практически представляет собой самостоятельный узел. Вот посмотрите, если нужен маломощный источник, например, для питания портативной аппаратуры, и есть в наличии неисправный блок питания АТХ, то, при условии исправности трансформатора Т6, можно используя этот трансформатор собрать по этой схеме блок питания, дополнив его сетевым выпрямителем. А если ИМС 78L05 заменить на 78L09 можно получить 9V для питания аппаратуры, обычно питающейся от «Кроны», а используя параметрический стабилизатор на светодиоде и резисторе можно сделать блок на 1.5V для питания такой аппаратуры, как, например, карманный МП-3 плеер. Третий участок это ШИМ-контроллер TL494. В его составе генератор импульсов с ШИМ, защита блока питания от коротких замыканий, стабилизация выходных напряжений, и формирование противофазных импульсов для управления транзисторными ключами, которые нагружены на импульсный трансформатор.

Для управления включением-выключением используется сигнал PS-ON. Он поступает от схемы компьютера. Фактически для включения основной части блока питания нужно чтобы на этой шине (PS-ON) был логический ноль. Практически, замкнуть на общий провод. При этом транзисторы Q10 и Q11 закрываются и микросхема TL494 переходит в рабочий режим.

Для выключения нужно на PS-ON подать логическую единицу уровня 5V, или просто отключить этот провод так как он подтянут к +5V через резистор R23.

На микросхеме IC2 (LM393) выполнена схема, работающая с сигналом POWERGOOD. Если в схеме ПК возникает аварийное состояние, требующее выключения эта схема выключает блок питания в дежурный режим.

Четвертый участок состоит из двух трансформаторов и двух групп транзисторных ключей. Первый трансформатор формирует управляющее напряжение для выходных транзисторов. Поскольку ШИМ-контроллер TL494 генерирует сигнал слабой мощности, первая группа транзисторов Q3 и Q4 усиливает этот сигнал и передает его переходному трансформатору Т2. Вторая группа транзисторов (Q1 и Q2), или выходные, нагружены на основной импульсный трансформатор ТЗ, который осуществляет формирование основных напряжений питания. Такая более сложная схема управления выходными ключами применена из-за сложности управления биполярными транзисторами и защиты ШИМ-контроллера от выбросов высокого напряжения.

Пятый участок — схема вторичных выпрямителей, он состоит из диодов Шоттки, выпрямляющих вторичное напряжение трансформатора ТЗ, и фильтра низких частот (ФНЧ). ФНЧ состоит из электролитических конденсаторов значительной емкости и дросселей. На выходе ФНЧ стоят резисторы, которые необходимы для того, чтобы после выключения емкости блока питания не оставались заряженными. Также резисторы стоят и на выходе выпрямителя сетевого напряжения.

Следует заметить, что далеко не все блоки питания АТХ строятся именно по схеме, показанной на рисунке 1. Могут быть существенные отличия связанные с другими схемотехническими решениями, другими параметрами по мощности, другой элементной базой. Хотя, общий функциональный состав практически у всех тот же.

И так, вернемся к началу статьи, — физически блок питания АТХ представляет собой железный ящик размерами 140x150x80мм (или около того), на одной стороне корпуса которого расположен сетевой разъем, механический выключатель (или переключатель напряжения 110/220V, или разъем для подачи питания на монитор), а на другой стороне есть отверстие из которого выходит жгут разноцветных проводов с разъемами.

По цветам проводов маркировка такая:
Черный — общий провод, «земля», GND
Белый — минус 5V
Синий — минус 12V
Желтый — плюс 12V
Красный — плюс 5V
Оранжевый — плюс 3.3V
Зеленый — включение (PS-ON)
Серый — POWER-OK (POWERGOOD)
Фиолетовый — 5VSB (дежурного питания).

 



Рис. 2. Разъемы БП ATX
 

 
На рисунке 2 показаны разъемы (если их повернуть дырками к себе). Причем не все из показанных разъемов могут присутствовать у одного и того же блока питания. Например, главный разъем только один, -либо 20-контактный, либо 24-контактный. Разъем для SATA жесткого диска может отсутствовать вовсе. А разъем для дополнительного питания процессора может быть 4-контактный или 8-контактный.
Ну а теперь «самое главное» — чтобы включить блок питания АТХ в рабочий режим нужно соединить контакт PS-ON главного   разъема с любым контактом GND.  Или зеленый провод соединить с любым черным.

 

 
Андреев С. Радиоконструктор, 12-2012 стр. 15-18

radio-bes.do.am