Теория закон ома – Закон Ома — Википедия

Содержание

Закон Ома для участка цепи и полной цепи формулы и определения

В данной статье расскажем про закон Ома, формулы для полной цепи (замкнутой), участка цепи, неоднородного участка цепи, в дифференциальной и интегральной форме, переменного тока, а также для магнитной цепи. Вы узнаете какие материалы соответствуют и не соответствуют закону Ома, а также где он встречается.
Закон Ома: постоянный ток , протекающий через проводник, прямо пропорционален напряжению , приложенному к его концам и обратно пропорционален сопротивлению .

Закон Ома был сформулирован немецким физиком и математиком Георгом Омом в 1825-26 годах на основе опыта. Это экспериментальный закон, а не универсальный — он применим к некоторым материалам и условиям.

Закон Ома является частным случаем более позднего и более общего —  второго закона Кирхгофа

Ниже будет представлено видео, в котором объясняется закон Ома на пальцах.

 

Формула закона Ома для участка цепи

Интенсивность постоянного тока, протекающего через проводник, пропорциональна напряжению, приложенному к его концам. В интернете часто называют данную формулу первым законом Ома:

U — напряжение

I — сила (интенсивность) тока

R —  Сопротивление

Электрическое сопротивление:

Коэффициент пропорциональности R называется электрическим сопротивлением или сопротивлением.

Отношение напряжения к току для данного проводника является постоянным:

Единица электрического сопротивления составляет 1 Ом  (1 Ω):

Резистор имеет сопротивление 1, если приложенное напряжение 1 вольт и сила тока составляет 1 ампер.

Зависимость электрического сопротивления от размера направляющей:

Сопротивление проводящей секции с постоянным поперечным сечением R прямо пропорционально длине этого сегмента li, обратно пропорциональному площади поперечного сечения S:

R— электрическое сопротивление

ρ — удельное сопротивление

I — длина направляющей

S — площадь поперечного сечения

Эта зависимость была подтверждена экспер

meanders.ru

Законы Ома и Кирхгофа, теория и примеры

Закон Ома является основным законом, который используют при расчетах цепей постоянного тока. Он является фундаментальным и может применяться для любых физических систем, где есть потоки частиц и поля, преодолевается сопротивление.

Законы или правила Кирхгофа являются приложением к закону Ома, используемым для расчета сложных электрических цепей постоянного тока.

Закон Ома

Обобщенный закон Ома для неоднородного участка цепи (участка цепи, содержащего источник ЭДС) имеет вид:

   

– разность потенциалов на концах участка цепи; – ЭДС источника на рассматриваемом участке цепи; R – внешнее сопротивление цепи; r – внутреннее сопротивление источника ЭДС. Если цепь разомкнута, значит, тока в ней нет (), то из (2) получим:

   

ЭДС, действующая в незамкнутой цепи, равна разности потенциалов на ее концах. Получается, для нахождения ЭДС источника следует измерить разность потенциалов на его клеммах при незамкнутой цепи.

Закон Ома для замкнутой цепи записывают как:

   

Величину иногда называют полным сопротивлением цепи. Формула (2) показывает, что электродвижущая сила источника тока, деленная на полное сопротивление равна силе тока в цепи.

Закон Кирхгофа

Пусть имеется произвольная разветвленная сеть проводников. В отдельных участках включены разнообразные источники тока. ЭДС источников постоянны и будем считать известными. При этом токи во всех участках цепи и разности потенциалов на них можно вычислить при помощи закона Ома и закона сохранения заряда.

Для упрощения решения задач по расчетам разветвлённых электрических цепей, имеющих несколько замкнутых контуров, несколько источников ЭДС, используют законы (или правила) Кирхгофа. Правила Кирхгофа служат для того, чтобы составить систему уравнений, из которой находят силы тока в элементах сложной разветвленной цепи.

Первый закон Кирхгофа

Сумма токов в узле цепи с учетом их знаков равна нулю:

   

Первое правило Кирхгофа является следствием закона сохранения электрического заряда. Алгебраическая сумма токов, сходящихся в любом узле цепи – это заряд, который приходит в узел за единицу времени.

При составлении уравнение используя законы Кирхгофа важно учитывать знаки с которыми силы токов входят в эти уравнения. Следует считать, что токи, идущие к точке разветвления, и исходящие от разветвления имеют противоположные знаки. При этом нужно для себя определить какое направление (к узлу или от узла) считать положительным.

Второй закон Кирхгофа

Произведение алгебраической величины силы тока (I) на сумму вешних и внутренних сопротивлений всех участков замкнутого контура равно сумме алгебраических значений сторонних ЭДС () рассматриваемого контура:

   

Каждое произведение определяет разность потенциалов, которая существовала бы между концами соответствующего участка, если бы ЭДС в нем была равно нулю. Величину называют падением напряжения, которое вызывается током.

Второй закон Кирхгофа иногда формулируют следующим образом:

Для замкнутого контура сумма падений напряжения есть сума ЭДС в рассматриваемом контуре.

Второе правило (закон) Кирхгофа является следствием обобщенного закона Ома. Так, если в изолированной замкнутой цепи есть один источник ЭДС, то сила тока в цепи будет такой, что сумма падения напряжения на внешнем сопротивлении и внутреннем сопротивлении источника будет равна сторонней ЭДС источника. Если источников ЭДС несколько, то берут их алгебраическую сумму. Знак ЭДС выбирается положительным, если при движении по контуру в положительном направлении первым встречается отрицательный полюс источника. (За положительное направление обхода контура принимают направление обхода цепи либо по часовой стрелке, либо против нее).

Примеры решения задач

ru.solverbook.com

24.Вывод закона Ома по электронной теории.

Пусть в металлическом проводнике существует электрическое по­ле напряженностью Е=const. Co стороны поля заряд е испытывает действие силы F=eE и приобретает ускорение а=F/m=еЕ/т. Таким образом, во время сво­бодного пробега электроны движутся рав­ноускоренно, приобретая к концу свобод­ного пробега скорость

vmax= еE<t>.

где <t>—среднее время между двумя последовательными соударениями элек­трона с ионами решетки.

Согласно теории Друде, в конце сво­бодного пробега электрон, сталкиваясь с ионами решетки, отдает им накопленную в поле энергию, поэтому скорость его упо­рядоченного движения становится равной нулю. Следовательно, средняя скорость направленного движения электрона

<v>=(vmax+0)/2=eE<t>/(2m). (103.1)

Классическая теория металлов не учи­тывает распределения электронов по ско­ростям, поэтому среднее время <t> сво­бодного пробега определяется средней длиной свободного пробега <l> и средней скоростью движения электронов относи­тельно кристаллической решетки провод­ника, равной <u>+(v) (<u>средняя скорость теплового движения электронов). В §102 было показано, что (v)<< <u>, поэтому

<t>=<l>/<u>.

Подставив значение <t> в формулу (103.1), получим

<v>=eE<l>/(2m<u>).

Плотность тока в металлическом провод­нике, по (96.1),

откуда видно, что плотность тока пропор­циональна напряженности поля,

т. е. получили закон Ома в дифференци­альной форме (ср. с (98.4)). Коэффициент пропорциональности между j и Е есть не что иное, как удельная проводимость ма­териала

которая тем больше, чем больше концен­трация свободных электронов и средняя длина их свободного пробега.

25. Вывод закона Джоуля – Ленца по электронной теории.

К концу свободного пробега электрон под действи­ем поля приобретает дополнительную ки­нетическую энергию

При соударении электрона с ионом эта энергия полностью передается решетке и идет на увеличение внутренней энергии металла, т. е. на его нагревание.

За единицу времени электрон испыты­вает с узлами решетки в среднем <z> столкновений:

<z>=<u>/<l>. (103.4)

Если n — концентрация электронов, то в единицу времени происходит n<z> стол­кновений и решетке передается энергия

w=n<z><Eк>, (103.5)

которая идет на нагревание проводника. Подставив (103.3) и (103.4) в (103.5), получим таким образом энергию, переда­ваемую решетке в единице объема провод­ника за единицу времени,

Величина w называется удельной тепловой мощностью тока (см. §99). Коэффициент пропорциональности между w и Е2 по (103.2) есть удельная проводимость ; сле­довательно, выражение (103.6) —закон Джоуля — Ленца в дифференциальной форме (ср. с (99.7)).

26.Закон Видемана-Франца. Связь между электро и теплопроводностью металлов и ее объяснение электронной теорией.

Закон Видемана — Франца. Метал­лы обладают как большой электропровод­ностью, так и высокой теплопроводностью. Это объясняется тем, что носителями тока и теплоты в металлах являются одни и те же частицы — свободные электроны, кото­рые, перемещаясь в металле, переносят не только электрический заряд, но и прису­щую им энергию хаотического теплового движения, т. е. осуществляют перенос теплоты.

Видеманом и Францем в 1853 г. экспе­риментально установлен закон, согласно которому отношение теплопроводности () к удельной проводимости () для всех металлов при одной и той же температуре одинаково и увеличивается пропорцио­нально термодинамической температуре:

/=T,

где  — постоянная, не зависящая от рода металла.

Элементарная классическая теория электропроводности металлов позволила найти значение : =3(k/e)2, где kпос­тоянная Больцмана. Это значение хорошо согласуется с опытными данными. Однако, как оказалось впоследствии, это согласие теоретического значения с опытным слу­чайно. Лоренц, применив к электронному газу статистику Максвелла — Больцмана, учтя тем самым распределение электронов по скоростям, получил =2(k/e)2, что привело к резкому расхождению теории с опытом.

Таким образом, классическая теория электропроводности металлов объяснила законы Ома и Джоуля — Ленца, а также дала качественное объяснение закона Ви­демана — Франца. Однако она помимо рассмотренных противоречий в законе Ви­демана — Франца столкнулась еще с ря­дом трудностей при объяснении различных опытных данных.

Температурная зависимость сопротив­ления. Из формулы удельной проводимо­сти (103.2) следует, что сопротивление металлов, т. е. величина, обратно пропор­циональная , должна возрастать пропор­ционально T (в (103.2) n и <l> от темпе­ратуры не зависят, а <u>~Т). Этот вывод электронной теории противоречит опытным данным, согласно которым R~T (см. §98).

Оценка средней длины свободного про­бега электронов в металлах. Чтобы по формуле (103.2) получить , совпадающие с опытными значениями, надо принимать <l> значительно больше истинных, иными словами, предполагать, что электрон про­ходит без соударений с ионами решетки сотни междоузельных расстояний, что не согласуется с теорией Друде — Лоренца.

Теплоемкость металлов. Теплоемкость металла складывается из теплоемкости его кристаллической решетки и теплоемко­сти электронного газа. Поэтому атомная (т. е. рассчитанная на 1 моль) теплоемкость металла должна быть значительно большей, чем атомная теплоемкость ди­электриков, у которых нет свободных элек­тронов. Согласно закону Дюлонга и Пти (см. §73), теплоемкость одноатомного кристалла равна 3R. Учтем, что теплоем­кость одноатомного электронного газа равна 3/2R. Тогда атомная теплоемкость металлов должна быть близка к 4,5R. Однако опыт доказывает, что она равна 3R, т. е. для металлов, так же как и для диэлектриков, хорошо выполняется закон Дюлонга и Пти. Следовательно, наличие электронов проводимости практически не сказывается на значении теплоемкости, что не объясняется классической электрон­ной теорией.

Указанные расхождения теории с опы­том можно объяснить тем, что движение электронов в металлах подчиняется не законам классической механики, а зако­нам квантовой механики и, следовательно, поведение электронов проводимости надо описывать не статистикой Максвелла — Больцмана, а квантовой статистикой. По­этому объяснить затруднения элементар­ной классической теории электропровод­ности металлов можно лишь квантовой тео­рией, которая будет рассмотрена в даль­нейшем. Надо, однако, отметить, что клас­сическая электронная теория не утратила своего значения и до настоящего времени, так как во многих случаях (например, при малой концентрации электронов проводи­мости и высокой температуре) она дает правильные качественные результаты и является по сравнению с квантовой тео­рией простой и наглядной.

studfiles.net

Законы Ома и Джоуля-Ленца в классической теории

Объяснение закона Ома в классической теории

В классической теории электропроводности металлов считается, что дополнительная энергия, которую приобретает электрон, при нахождении проводника во внешнем электрическом поле:

где $q_e$,$\ m_e$ — заряд и масса электрона, $E$ — напряженность внешнего электрического поля. Исходя из уравнения (2), получим, что к концу своего пробега скорость электрона в среднем будет равна:

где $\tau $ — среднее время, которое проходит между двумя последовательными соударениями электрона с ионами решетки.

Друде, основавший классическую теорию электропроводности металлов, не учитывал распределения электронов по скоростям и приписывал им всем одинаковые скорости $v$. В таком случае можно считать, что:

где $\left|\overrightarrow{v}\right|\approx \left|\overrightarrow{v}+\overrightarrow{u}\right|$. Подставим выражение (4) в формулу (3), имеем:

Получилось, что скорость $u$ изменяется линейно за время пробега. Значит, ее среднее значение за пробег равно:

Подставим среднюю скорость из формулы (6) в выражение для плотности тока:

в результате получим:

Мы получили, что $j\sim E$. То есть пришли к закону Ома, где удельная проводимость ($\sigma $) вычисляется как:

В том случае, если бы столкновения электронов с ионами не было, то длина свободного пробега была бесконечно большой ($\lambda \to \infty $), значит бесконечно большой была бы проводимость. Из классической теории проводимости можно сделать вывод о том, что сопротивление металлов вызвано столкновениями свободных электронов с ионами узлов кристаллической решетки.

Закон Джоуля — Ленца

К окончанию свободного пробега электрон имеет дополнительную кинетическую энергию (${\triangle W}_k$), среднее значение которой равно:

По теории, когда электрон сталкивается с ионом, он полностью передает дополнительную энергию (${\triangle W}_k$) кристаллической решетке. Энергия, которая при этом сообщается решетке, расходуется на увеличение внутренней энергии металла, что проявляется в его нагревании.

Каждый электрон совершает в среднем за секунду $\frac{1}{\tau }=\frac{v}{\lambda }$ ударов. Каждый раз он сообщает решетке энергию $\left\langle {\triangle W}_k\right\rangle $ (10). Это значит, что в единице объема за единицу времени выделяется тепло (назовем его удельным) равное:

где $n$ — концентрация электронов проводимости. $Q_{ud}$ — удельная тепловая мощность тока. Используя выражение (9), формулу (11) можно записать как:

\[Q_{ud}=\sigma E^2=\rho j^2\left(12\right),\]

где $\rho =\frac{1}{\sigma }$ — удельное сопротивление. Выражение (12) — дифференциальная форма закона Джоуля — Ленца.

Так, мы получили, что классическая теория проводимости смогла объяснить законы Ома и закон Джоуля — Ленца.

Пример 1

Задание: Получите выражение, связывающее абсолютную температуру проводника и его удельную проводимость.

Решение:

Согласно классической теории электропроводности считаем, что к электронам в металле применима классическая статистическая механика. Тогда средняя энергия поступательного движения электронов в электронном газе (одноатомном) зависит только от абсолютной температуры (T) и равна:

\[W_k=\frac{m_ev^2}{2}=\frac{3}{2}kT\left(1.1\right).\]

Выразим из (1.1) скорость, получим:

\[v=\sqrt{\frac{3kT}{m_e}}\left(1.2\right).\]

Выражение для удельной проводимости, полученное в рамках теоретического материала имеет вид:

\[у=\frac{{{nq}_e}^2}{2m_e}\frac{\lambda }{v}\left(1.3\right).\]

Подставим в (1.3) выражение для скорости (1.2), имеем:

\[\sigma =\frac{{{nq}_e}^2}{2m_e}\frac{\lambda }{\sqrt{\frac{3kT}{m_e}}}=\frac{{{n\lambda q}_e}^2}{2\sqrt{3kTm_e}}.\]

Ответ: $\sigma =\frac{{{n\lambda q}_e}^2}{2\sqrt{3kTm_e}}$. Из полученного выражения видно, что сопротивление металлов должно расти пропорционально квадратному корню от температуры. Для предположения о том, что $n\ и\ \lambda $ зависят от температуры, в классической теории электропроводности снований нет. То есть классическая теория не смогла объяснить эмпирические данные, согласно которым сопротивление металлов пропорционально первой степени температуры.

Пример 2

Задание: Объясните, почему металлы оказывают сопротивление электрическому току.

Решение:

Если бы электроны не испытывали ни каких помех при своём движении, то после приведения их однажды их в упорядоченное движение, они двигались бы по инерции бесконечное время без воздействия внешнего электрического поля. Однако в действительности электроны испытывают соударения с ионами кристаллической решетки. При чем, до удара электрон обладает некоторой скоростью упорядоченного движения, после соударения электроны отскакивают в произвольных направлениях, скорость упорядоченного движения становится равной нулю. После выключения внешнего поля упорядоченное движение электронов (ток) скоро прекратится. Для того чтобы получить ток, текущий сколько ни будь длительное время, необходимо чтобы после каждого удара электрона о ион, на электрон действовала сила, то есть необходимо существование внешнего поля. Причем плотность тока в проводнике тем выше, чем больше напряженность приложенного поля.

spravochnick.ru

Закон Ома. История открытия. Различные виды закона Ома

Реферат

Закон Ома. История открытия. Различные виды закона Ома.

Содержание.

1. Общий вид закона Ома.

2. История открытия закона Ома, краткая биография ученого.

3. Виды законов Ома.

Закон Ома устанавливает зависи­мость между силой тока I в проводнике и разностью потенциалов (напряже­нием) U между двумя фиксированными точками (сечениями) этого проводника:

(1) Коэффициент пропорциональности R , завися­щий от геометрических и электрических свойств проводника и от температуры, называется омическим сопротивлением или просто сопротивлением данного участка проводника. Закон Ома был от­крыт в 1826 нем. физиком Г. Омом.

Георг Симон Ом родился 16 марта 1787 года в Эрлангене, в семье потомственного слесаря. После окончания школы Георг поступил в городскую гимназию. Гимназия Эрлангена курировалась университетом. Занятия в гимназии вели четыре профессора. Георг, закончив гимназию, весной 1805 года приступил к изучению математики, физики и философии на философском факультете Эрлангенского университета.

Проучившись три семестра, он принял приглашение занять место учителя математики в частной школе швейцарского городка Готтштадта.

В 1811 году он возвращается в Эрланген, заканчивает университет и получает степень доктора философии. Сразу же по окончании университета ему была предложена должность приват-доцента кафедры математики этого же университета.

В 1812 году Ом был назначен учителем математики и физики школы в Бамберге. В 1817 году он публикует свою первую печатную работу, посвященную методике преподавания «Наиболее оптимальный вариант преподавания геометрии в подготовительных классах». Ом занялся исследованиями электричества. В основу своего электроизмерительного прибора Ом заложил конструкцию крутильных весов Кулона. Результаты своих исследований Ом оформил в виде статьи под названием «Предварительное сообщение о законе, по которому металлы проводят контактное электричество». Статья была опубликована в 1825 году в «Журнале физики и химии», издаваемом Швейггером. Однако выражение, найденное и опубликованное Омом, оказалось неверным, что стало одной из причин его длительного непризнания. Приняв все меры предосторожности, заранее устранив все предполагаемые источники ошибок, Ом приступил к новым измерениям.

Появляется в свет его знаменитая статья «Определение закона, по которому металлы проводят контактное электричество, вместе с наброском теории вольтаического аппарата и мультипликатора Швейггера», вышедшая в 1826 году в «Журнале физики и химии».

В мае 1827 года «Теоретические исследования электрических цепей» объемом в 245 страниц, в которых содержались теперь уже теоретические рассуждения Ома по электрическим цепям. В этой работе ученый предложил характеризовать электрические свойства проводника его сопротивлением и ввел этот термин в научный обиход. Ом нашел более простую формулу для закона участка электрической цепи, не содержащего ЭДС: «Величина тока в гальванической цепи прямо пропорциональна сумме всех напряжений и обратно пропорциональна сумме приведенных длин. При этом общая приведенная длина определяется как сумма всех отдельных приведенных длин для однородных участков, имеющих различную проводимость и различное поперечное сечение».

В 1829 году появляется его статья «Экспериментальное исследование работы электромагнитного мультипликатора», в которой были заложены основы теории электроизмерительных приборов. Здесь же Ом предложил единицу сопротивления, в качестве которой он выбрал сопротивление медной проволоки длиной 1 фут и поперечным сечением в 1 квадратную линию.

В 1830 году появляется новое исследование Ома «Попытка создания приближенной теории униполярной проводимости».

Только в 1841 году работа Ома была переведена на английский язык, в 1847 году — на итальянский, в 1860 году — на французский.

16 февраля 1833 года, через семь лет после выхода из печати статьи, в которой было опубликовано его открытие, Ому предложили место профессора физики во вновь организованной политехнической школе Нюрнберга. Ученый приступает к исследованиям в области акустики. Результаты своих акустических исследований Ом сформулировал в виде закона, получившего впоследствии название акустического закона Ома.

Раньше всех из зарубежных ученых закон Ома признали русские физики Ленц и Якоби. Они помогли и его международному признанию. При участии русских физиков, 5 мая 1842 года Лондонское Королевское общество наградило Ома золотой медалью и избрало своим членом.

В 1845 году его избирают действительным членом Баварской академии наук. В 1849 году ученого приглашают в Мюнхенский университет на должность экстраординарного профессора. В этом же году он назначается хранителем государственного собрания физико-математических приборов с одновременным чтением лекций по физике и математике. В 1852 году Ом получил должность ординарного профессора. Ом скончался 6 июля 1854 года. В 1881 году на электротехническом съезде в Париже ученые единогласно утвердили название единицы сопротивления — 1 Ом.

В общем случае зависимость между I и U нелинейна, однако на практике всегда можно в определенном интервале напряжений считать её линейной и применять закон Ома; для металлов и их сплавов этот интервал практически неограничен.

Закон Ома в форме (1) справедлив для участков цепи, не содержащих источ­ников ЭДС. При наличии таких источников (аккумуляторов, термопар, ге­нераторов и т. д.) закон Ома имеет вид:

(2)

где

— ЭДС всех источников, вклю­чённых в рассматриваемый участок цепи. Для замкнутой цепи закон Ома при­нимает вид: (3)

где

— полное сопротивление цепи, равное сумме внешнего сопротив­ления r и внутреннего сопротивления источника ЭДС. Обобщением закона Ома на случай разветвлённой цепи является правило 2-е Кирхгофа.

Закон Ома можно записать в дифференциальной форме, связывающей в каждой точке проводника плотность тока j с полной напряжённостью электрического поля. Потенциальное. электрическое поле напряжённости Е , создаваемое в проводниках микроскопическими зарядами (электронами, ионами) самих проводников, не может поддерживать стационарное движение свободных зарядов (ток), т. к. работа этого поля на замкнутом пути равна нулю. Ток поддерживается неэлектростатическими силами различного происхождения (индукционного, химического, теплового и т.д.), которые действуют в источниках ЭДС и которые можно представить в виде некоторого эквивалентного непотенциального поля с напряженностью E СТ, называемого сторонним. Полная напряженность поля, действующего внутри проводника на заряды, в общем случае равна E + E СТ . Соответственно, дифференциальный закон Ома имеет вид:

или , (4)

где

— удельное сопротивление материала проводника, а — его удельная электропроводность.

Закон Ома в комплексной форме справедлив также для синусоидальных квазистационарных токов:

(5)

где z полное комплексное сопротивление:

, r – активное сопротивление, а x — реактивное сопротивление цепи. При наличии индуктивности L и емкости С в цепи квазистационарного тока частоты .

Существует несколько видов закона Ома.

Закон Ома для однородного участка цепи (не содержащего источника тока): сила тока в проводнике прямо про­порциональна приложенному напряжению и обратно про­порциональна сопротивлению проводника:

Закон Ома для замкнутой цепи: сила тока в замкнутой цепи равна отношению ЭДС источника тока к суммарному сопротивлению всей цепи:

где R — сопротивление внешней цепи, r – внутреннее сопротивление источника тока.

R — +

R

Закон Ома для неоднородного участка цепи (участка цепи с источником тока):

mirznanii.com

18.2. Вывод закона Ома в дифференциальной форме в классической электронной теории

Друде считал, что сразу после очередного соударения электрона с ионом кристаллической решетки скорость упорядоченного движения электрона равна нулю. Предположим, что напряженность поля не изменяется. Тогда под действием поля электрон получит постоянное ускорение равное

и к концу пробега скорость упорядоченного движения достигнет значения

(18.2)

где t — среднее время между двумя последовательными соударениями электрона с ионами решетки. Друде не учитывал распределение электронов по скоростям и приписывал всем электронам одинаковое значение средней скорости  . В этом приближении  , где  — среднее значение длины свободного пробега,  — скорость теплового движения электронов. Подставим это значение t в формулу (18.2)

Скорость изменяется за время пробега линейно. Поэтому ее среднее (за пробег) значение равно половине максимального

Подставив это выражение в

получим

Плотность тока оказалась пропорциональной напряженности поля. Следовательно, мы получили закон Ома. Согласно  коэффициент пропорциональности между j и Е представляет собой проводимость

(18.3)

Если бы электроны не сталкивались с ионами решетки, длина свободного пробега, а, следовательно, и проводимость были бы бесконечно велики. Таким образом, электрическое сопротивление металлов обусловлено соударениями свободных электронов с ионами.

18.3. Вывод закона Джоуля-Ленца в дифференциальной форме в классической теории электропроводности

К концу свободного пробега электрон приобретает скорость  , и, следовательно, дополнительную кинетическую энергию, средняя величина которой

Столкнувшись с ионом, электрон по предположению полностью теряет приобретенную им за время пробега скорость, и передает энергию кристаллической решетке. Эта энергия идет на увеличение внутренней энергии металла, проявляющееся в его нагревании. Каждый электрон претерпевает за секунду в среднем 1/t соударений, сообщая всякий раз решетке энергию  . Следовательно, в единице объема за единицу времени должно выделяться тепло

где n — число электронов проводимости в единице объема. Величина  есть не что иное, как удельная мощность тока. Множитель при  совпадает со значением  (18.3) для закона Ома. Таким образом. Мы пришли к выражению закона Джоуля-Ленца в дифференциальной форме.

18.4. Связь между теплопроводностью и электропроводностью металлов (закон Видемана-Франца)

Из опыта известно, что наряду с высокой электропроводностью металлы отличаются также большой теплопроводностью. Видеман и Франц установили в 1853 г. эмпирический закон, согласно которому отношение коэффициента теплопроводности к коэффициенту электропроводности для всех металлов приблизительно одинаково и изменяется пропорционально абсолютной температуре. Способностью проводить тепло обладают и неметаллические кристаллы. Однако теплопроводность металлов значительно превосходит теплопроводность диэлектриков. Из этого можно заключить, что теплопередача в металлах осуществляется в основном не кристаллической решеткой, а электронами. Рассматривая электроны как одноатомный газ, для коэффициента теплопроводности можно заимствовать выражение кинетической теории газа

где  — плотность газа;  .

Тогда

(18.4)

Удельная теплоемкость одноатомного газа равна

Подставляя эти значения в выражение (18.4), получим

(18.5)

Разделив (18.5) на (18.3), имеем

Произведя замену  приходим к соотношению

(18.6)

которое выражает закон Видемана-Франца, При T=300°К для отношения получается значение  , очень хорошо согласующееся с экспериментальными данными.

studfiles.net

Формулировка закона Ома для полных замкнутых цепей и электрических контурах

При проектировании и ремонте схем различного назначения обязательно учитывается закон Ома для полной цепи. Поэтому тем, кто собирается этим заниматься, для лучшего понимания процессов этот закон надо знать. Законы Ома разделяют на две категории:

  • для отдельного участка электрической цепи;
  • для полной замкнутой цепи.

В обоих случаях учитывается внутреннее сопротивление в структуре источника питания. В вычислительных расчетах используют закон Ома для замкнутой цепи и другие определения.

Общее определение, формула расчета с буквенными обозначениями

Простейшая схема с источником ЭДС

Чтобы понять закон Ома для полной цепи, для наглядности изучения рассматривается самая простая схема с минимальным количеством элементов, ЭДС и активной резистивной нагрузки. Можно прибавить в комплект соединительные провода. Для питания идеально подходит автомобильный аккумулятор 12В, он рассматривается как источник ЭДС со своим сопротивлением в элементах конструкции.

Элементы схемы

Роль нагрузки играет обычная лампа накаливания с вольфрамовой спиралью, которая имеет сопротивление в несколько десятков Ом. Данная нагрузка преобразует электрическую энергию в тепловую. Всего несколько процентов расходуются на излучение потока света. При расчете таких схем применяют закон Ома для замкнутой цепи.

Принцип пропорциональности

Экспериментальными исследованиями в процессе измерений величин при разных значениях параметров полной цепи:

  • Силы тока – I А;
  • Суммы сопротивлений батареи и нагрузки – R+r измеряют в омах;
  • ЭДС – источник тока, обозначают как Е. измеряется в вольтах

было замечено, что сила тока имеет прямо пропорциональную зависимость относительно ЭДС и обратную пропорциональную зависимость относительно суммы сопротивлений, которые замыкаются последовательно в контуре цепи. Алгебраически это сформулируем следующим образом:

Подключение лампы к аккумуляторной батарее

Рассматриваемый пример схемы с замкнутым контуром цепи – с одним источником питания и одним внешним элементом сопротивления нагрузки в виде лампы со спиралью накаливания. При расчете сложных схем с несколькими контурами и множеством элементов нагрузки применяют закон Ома для всей цепи и другие правила. В частности надо знать законы Киргофа, понимать, что такое двухполюсники, четырехполюсники, отводящие узлы и отдельные ветви. Это требует детального рассмотрения в отдельной статье, раньше этот курс ТЭРЦ (теория электро- радиотехнических цепей) в институтах учили не менее двух лет. Поэтому ограничиваемся простым определением только для полной электрической цепи.

Особенности сопротивлений в источниках питания

Важно! Если сопротивление спирали на лампе мы видим на схеме и в реальной конструкции, то внутреннего сопротивления в конструкции гальванической батарейки, или аккумулятора, не видно. В реальной жизни, даже если разобрать аккумулятор, найти сопротивление невозможно, оно не существует как отдельная деталь, иногда его отображают на схемах.

Схема с отображением сопротивления источника ЭДС

Внутреннее сопротивление создается на молекулярном уровне. Токопроводящие материалы аккумулятора или другого источника питания генератора с выпрямителем тока не обладают 100% проводимостью. Всегда присутствуют элементы с частицами диэлектрика или металлов другой проводимости, это создает потери тока и напряжения в батарее. На аккумуляторах и батарейках нагляднее всего отображается влияние сопротивления элементов конструкции на величину напряжения и тока на выходе. Способность источника выдавать максимальный ток определяет чистота состава токопроводящих элементов и электролита. Чем чище материалы, тем меньше значение r, источник ЭДС выдает больший ток. И, наоборот, при наличии примесей ток меньше, r увеличивается.

В нашем примере аккумулятор имеет ЭДС 12В, к нему подключается лампочка, способная потреблять мощность 21 Вт, в этом режиме спираль лампы раскаляется до максимально допустимого накала. Формулировка проходящего через нее тока записывается как:

I = P\U = 21 Вт / 12В = 1,75 А.

Закон Ома для участка цепи

При этом спираль лампы горит в половину накала, выясним причину этого явления. Для расчетов сопротивления общей нагрузки (R + r) применяют законы Ома для отдельных участков цепей и принципы пропорциональности:

(R + r) = 12\ 1,75 = 6,85 Ом.

Возникает вопрос, как выделить из суммы сопротивлений величину r. Допускается вариант – измерить мультиметром сопротивление спирали лампы, отнять его от общего и получить значение r – ЭДС. Этот способ будет не точен – при нагревании спирали сопротивление значительно изменяет свою величину. Очевидно, что лампа не потребляет заявленной в ее характеристиках мощности. Ясно, что напряжение и ток для накаливания спирали малы. Для выяснения причины измерим падение напряжения на аккумуляторе при подключенной нагрузке, к примеру, оно будет 8 Вольт. Предположим, что сопротивление спирали рассчитывается с использованием принципов пропорциональности:

U/ I = 12В/1,75А = 6,85 Ом.

При падении напряжения сопротивление лампы остается постоянным, в этом случае:

  • I = U/R = 8В/6,85 Ом = 1,16 А при требуемом 1.75А;
  • Потери по току = (1,75 -1.16) = 0,59А;
  • По напряжению = 12В – 8В = 4В.

Потребляемая мощность будет Р = UxI = 8В х 1.16А = 9,28 Вт вместо положенных 21 Вт. Выясняем, куда уходит энергия. За пределы замкнутого контура не может, остаются только провода и конструкция источника ЭДС.

Сопротивление ЭДС – r можно вычислить, используя потерянные величины напряжения и тока:

r = 4В/0.59А = 6,7 Ом.

Получается внутреннее сопротивление источника питания «сжирает» половину выделяемой энергии на себя, и это, конечно, не нормально.

Такое бывает в старых отработавших свой срок или бракованных аккумуляторах. Сейчас производители стараются следить за качеством и чистотой применяемых токоведущих материалов, чтобы снизить потери. Для того чтобы в нагрузку отдавалась максимальная мощность, технологии изготовления источников ЭДС контролируют, чтобы величина не превышала 0,25 Ом.

Зная закон Ома для замкнутой цепи, используя постулаты пропорциональности, можно легко вычислить необходимые параметры для электрических цепей для определения неисправных элементов или проектирования новых схем различного назначения.

Видео

Оцените статью:

elquanta.ru