Трансформатор напряжения обозначение на схеме – ГОСТ 2.723-68 Единая система конструкторской документации (ЕСКД). Обозначения условные графические в схемах. Катушки индуктивности, дроссели, трансформаторы, автотрансформаторы и магнитные усилители (с Изменениями N 1, 2, 3), ГОСТ от 13 августа 1968 года №2.723-68

Содержание

Обозначение трансформатора на схеме

Содержание:
  1. Типы и принцип действия трансформаторов
  2. Схематическое обозначение трансформаторов
  3. Видео

В электрических схемах очень часто возникает необходимость в повышении или понижении напряжения. Для выполнения таких преобразований существуют специальные устройства – трансформаторы. В конструкцию прибора входят обмотки в количестве две и более, намотанные на ферромагнитный сердечник. Поэтому обозначение трансформатора на схеме осуществляется, исходя из конкретной модели и конструктивных особенностей.

Основные типы и принцип действия трансформаторов

Существуют различные типы трансформаторов, отображаемые соответственно на электрических схемах. Например, при наличии только одной обмотки, такие устройства относятся к категории автотрансформаторов. Основные конструкции этих приборов, в зависимости от сердечника, бывают стержневые, броневые и тороидальные. Они имеют практически одинаковые технические характеристики и различаются лишь по способу изготовления. Каждое устройство, независимо от типа, состоит из трех основных функциональных частей – магнитопровода, обмоток и системы охлаждения.

Схематическое изображение трансформатора тесно связано с принципом его работы. Все особенности конструкции отражаются в электрической схеме. Очень хорошо просматривается первичная и вторичная обмотка. К первичной обмотке поступает ток от внешнего источника, а с вторичной обмотки снимается уже готовое выпрямленное напряжение. Преобразование тока происходит за счет переменного магнитного поля, возникающего в магнитопроводе.

Схематическое обозначение трансформаторов

Изображение трансформаторов на схемах определяется ГОСТами, разработанными еще при СССР. С незначительными изменениями и дополнениями они продолжают действовать и в настоящее время. В этом документе определены все известные виды трансформаторов, автотрансформаторов и их условные графические изображения, которые могут выполняться ручным способом или с помощью специальных компьютерных программ.

Условные графические изображения трансформаторов и автотрансформаторов могут быть построены тремя основными способами:

  • Упрощенная однолинейная схема (чертеж 1) отображает трансформаторные обмотки в виде двух окружностей. Их выводы показываются одной линией, на которую черточками наносится количество этих выводов.
  • Для автотрансформаторов предусмотрена развернутая дуга (чертеж 2), отображающая сторону более высокого напряжения.
  • Упрощенные многолинейные обозначения обмоток трансформаторов и автотрансформаторов (чертежи 3 и 4) такие же, как и на однолинейных схемах.

Исключения составляют обозначения выводов обмоток, представленные в виде отдельных линий. Кроме того, существуют развернутые обозначения обмоток, изображаемые в виде полуокружностей, соединенных в цепочку (). В данной схеме не устанавливается число полуокружностей и направление выводов обмотки. Начало обмотки обозначается точкой .

В зависимости от конструкции, трансформаторы отображаются на схемах следующим образом: трансформатор без магнитопровода с постоянной связью (рисунок 1) и с переменной связью (рисунок 2). Полярность мгновенных значение напряжения (рисунок 3) представлена на примере трансформатора с двумя обмотками и указателями полярности. Трансформаторы с магнитодиэлектрическими магнитопроводами обозначаются как обычный (рисунок 4) и подстраиваемый (рисунок 5).

Существуют и другие схематические обозначения, отображающие количество фаз, расположение отводов, тип соединения (звезда или треугольник) и другие параметры.

  • Чертеж 1 – ступенчатое регулирование трансформатора.
  • Чертеж 2 – однофазный трансформатор с ферромагнитным сердечником. Между обмотками имеется экран.
  • Чертеж 3 – дифференциальный трансформатор. Местом отвода служит средняя точка одной из обмоток.

  • Чертеж 4 – однофазный трансформатор с тремя обмотками и ферромагнитным сердечником.
  • Чертеж 5 – трехфазный трансформатор с ферромагнитным сердечником. Соединение обмоток выполнено звездой. В одном из вариантов может быть вывод средней нейтральной точки.
  • Чертеж 6 – трехфазное устройство с ферромагнитным магнитопроводом (сердечником). Соединение обмоток выполнено по схеме звезда-треугольник с выводом средней нейтральной точки.

  • Чертеж 7 – трансформатор, рассчитанный на три фазы. Обмотки соединяются комбинированно методом звезды и зигзага с выводом средней точки.
  • Чертеж 8 – тип устройства такой же, как и на предыдущих чертежах. Основное соединение – звезда, при необходимости регулировки под нагрузкой используется треугольник-звезда с выводом нейтральной точки.

  • Чертеж 9 – три фазы, три обмотки, соединенные по схеме звезда-звезда.
  • Чертеж 10 – схема вращающегося трансформатора. Таким способом обозначаются обмотки статора и ротора, соединенные между собой. Схема может меняться, в зависимости от конструкции и назначения машины.
  • Чертеж 11 – типовое устройство, в котором одна обмотка соединена звездой, а две другие обмотки – обратными звездами. Из двух обмоток выведены нейтральные точки, соединенные с уравнительным дросселем.

  • Чертеж 12 – группа трансформаторов, состоящая из трех однофазных устройств с двумя обмотками, соединенными по схеме звезда-треугольник.
  • Чертеж 13 – схема однофазного автотрансформатора с ферромагнитным сердечником.
  • Чертеж 14 – однофазный автотрансформатор с функцией регулировки напряжения.

  • Чертеж 15 – трехфазный автотрансформатор с ферромагнитным сердечником и обмотками, соединенные звездой.
  • Чертеж 16 – автотрансформатор на девять выводов.
  • Чертеж 17 – однофазный автотрансформатор с третичной обмоткой.

Существуют и другие конструкции трансформаторных устройств, которые отображаются на электрических схемах:

  • С одной вторичной обмоткой (рисунок 18).
  • Две вторичные обмотки и один магнитопровод (рисунок 19).
  • Два магнитопровода и две вторичные обмотки. Если магнитопроводов более двух, их можно не изображать (рисунок 20).
  • Шинный трансформатор тока с нулевой последовательностью и катушкой подмагничивания (рисунок 21).

Кроме приведенных примеров, обозначение трансформатора на схеме существует и в других вариантах. Более подробно с ними можно ознакомиться в специальных справочниках по электротехнике.

electric-220.ru

Измерительные трансформаторы напряжения

Трансформаторы напряжения применяются для питания обмотки вольтметра и реле в устройствах переменного тока при напряжении U ≥ 380В. Трансформатор напряжения состоит из сердечника, первичной и вторичной обмоток, вторичная обмотка заземляется (рис. 19.4).

Рис. 19.4. Трансформатор напряжения

Номинальный коэффициент трансформации трансформатора напряжения:

, (19.8)

где U1ном и U2ном – соответственно номинальные напряжения первичной и вторичной обмоток трансформатора напряжения. Принято U2ном=100 В или U2ном=В.

В связи с тем, что сопротивления параллельных обмоток измерительных приборов обладают высокими сопротивлениями, трансформатор напряжения работает в режиме холостого хода.

Условные и графические обозначения трансформатора напряжения

Однофазный измерительный трансформатор напряжения

Трехфазный измерительный трансформатор напряжения

Лекция 21. Системы электроснабжения. Определения, терминология.

Электроустановками – называются электрические машины, линии и вспомогательное оборудование (вместе с сооружениями и помещениями, в которых они установлены), предназначенные для производства, трансформации, передачи электроэнергии и преобразования ее в другой вид энергии.

Электрическими станциями – называются предприятия или установки, предназначенные для производства электрической энергии.

Электрическими подстанциями – называются электроустановки, предназначенные для преобразования и распределения электрической энергии.

Системой собственных нужд (ССН) – называются механизмы и установки, обеспечивающие нормальное функционирование электрических станций (дымососы, вентиляторы, дробилки и так далее).

Воздушные линии электропередач (ВЛЭП) – это устройства, предназначенные для передачи и распределения электрической энергии по проводам, расположенным на открытом воздухе и прикрепленным, при помощи изоляторов и арматуры, к опорам и кронштейнам или стойкам на инженерных сооружениях (мостах, путепроводах и так далее).

Кабельная линия (КЛ) – это линия для передачи электрической энергии или ее импульсов, состоящая из одного или нескольких кабелей с соединительными, штопорными и кольцевыми муфтами, и крепежными деталями.

Токопроводом (ТП)– называется устройство, предназначенное для передачи электрической энергии или отдельных ее импульсов, состоящее из неизолированных и изолированных проводников, и относящихся к ним изоляторов, защитных оболочек, ответвительных устройств, поддерживающих и опорных конструкций. В зависимости от вида проводников токопроводы подразделяются на гибкие и жесткие.

Система сборных шин (ССШ) – это комплекс токоведущих частей, предназначенных для приема и распределения электрической энергии.

Распределительным устройством (РУ) – называется электроустановка, служащая для приема и распределения электрической энергии, и содержащая сборные, соединительные шины, вспомогательные устройства, а также устройства защиты, автоматики и измерительные приборы.

Электрической сетью (ЭС) – называется совокупность электроустановок, предназначенных для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, трансформаторных подстанций, воздушных и кабельных линий электропередачи, работающих на определенной территории.

Приемником электрической энергии (ПЭЭ) – называется механическая машина (аппарат, агрегат), предназначенная для преобразования электрической энергии в другой вид энергии.

Потребителем электрической энергии (ПЭЭ) – называется приемник или группа приемников электрической энергии, объединенных технологическим процессом и размещенных на определенной территории.

Энергетической системой называется совокупность электрических станций, электрических и тепловых сетей, предназначенных для производства, передачи, распределения электрической энергии.

Например: Омская энергосистема (АК «Омскэнерго») включая ТЭЦ2, ТЭЦ5 и строющуюся ТЭЦ6, а также электрические связи линиями электропередач 500кВ с Казахстаном, Новосибирской системой и Уралом. Таким образом Омская энергосистема является частью объединенной энергосистемы России и СНГ с диспетчерским центром управления, находящимся в Москве.

Электроэнергетической системой называют электрическую часть энергосистемы для производства, передачи, распределения и потребления электрической энергии.

Рис. 20.1 – Структурная схема системы электроснабжения

ИП – источник питания;

ПС – питающая сеть;

ППЭ – пункт приема электрической энергии;

РС – распределительная сеть внутри предприятия;

РП – распределительные пункты;

ТП – цеховые трансформаторные подстанции;

ЭП – электроприемники.

Электроснабжением – называется обеспечение потребителей электрической энергией.

Системой электроснабжения – называется совокупность электроустановок, предназначенная для обеспечения потребителей электрической энергией; это часть электроэнергетической системы в которую входят: устройства передачи и распределения электрической энергии ее приемникам. Очевидно, что в систему электроснабжения не входят источники питания и электроприемники. Систему электроснабжения условно делят на две части, или подсистемы. Принято называть их так же системами: С1 – внешняя, С2 – внутренняя.

В систему питания входят питающие сети; это, как правило, ВЛЭП, напряжением 35-110-220-330-500кВ.

Пример: часть нагрузок Нефтезавода питается по кабельной линии 35кВ.

Пункт приема электрической энергии (ППЭ) – понижающие подстанции, на которых установлены трансформаторы, с напряжением питания первичных обмоток соответствующих подстанций, а на вторичных 6 или 10кВ. Это напряжение и подается в распределительную сеть.

Пункт приема электрической энергии часто ставят на территории предприятия, как можно ближе к электроприемникам. Тогда эта подстанция и вся система носит название «глубокого ввода». Например: так сделано на Сибзаводе (ЛЭП 110кВ). трансформаторы таких подстанций (их называют ПГВ – подстанции глубокого ввода) в большинстве случаев устанавливают открыто (на улице), но распределительные устройства 6 или 10кВ располагаются, как правило, внутри помещений.

Распределительные сети (РС) – это кабельные линии 6-10кВ, проложенные на территории объекта, либо в земле, либо, что представляется более перспективно, по воздуху на специальных устройствах – эстакадах. Кабельные линии подходят к цеховым подстанциям, где напряжение понижается до 380В (либо 660В). Для питания электроприемников напряжением 6-10кВ, сооружаются закрытые распределительные устройства (ЗРУ), задача которых питать электроприемники 6-10кВ.

Если распределительная сеть 10кВ, а некоторые приемники имеют номинальное напряжение 6 кВ, то, в таких случаях, для этих электроприемников устанавливают еще свои трансформаторы, напряжением 10/6кВ, то есть понижающие от 10 до 6кВ.

Электрическая схема электроустановки – это графическое изображение порядка соединений элементов оборудования, с помощью условных символов, в точном соответствии с действительностью.

Главной схемой соединений электрических станций и подстанций – называют схему электрических и трансформаторных соединений между основными ее элементами, связанными с производством, преобразованием и распределением электрической энергии. На чертеже все элемента схемы обозначаются условными символами. Анализируя главную схему можно оценить надежность, маневренность, экономичность станций и подстанций. Главные схемы представляются обычно в однолинейном представлении, то есть показываются электрические соединения элементов одной фазы (о наличии трех фаз можно, обычно, судить по условным обозначениям силовых трансформаторов, трансформаторов тока, некоторых типов трансформаторов напряжения). К элементам главной схемы относятся: генераторы (для станций), трансформаторы, шины, провода, линии электропередач, разъединители, выключатели, реакторы, измерительные трансформаторы, а также некоторые электроприемники, соизмеримые по мощности с силовым электрооборудованием подстанций. Пример: двигатели, дуговые печи и так далее.

Основные требования к системам электроснабжения (СЭС)

При проектировании систем электроснабжения должны быть выполнены три основных требования:

  1. Надежность, то есть бесперебойность питания, особенно: электроприемников, наиболее ответственных в технологическом процессе предприятия, а также соблюдение соответствующих стандартов качества электрической энергии.

Пример: величины напряжения, частоты переменного тока, формы кривой напряжения, симметрии по фазам трехфазных сетей и так далее (всего таких показателей – десять основных и три дополнительных).

  1. Экономичность, то есть имеется в виду минимум расчетных затрат на сооружение и эксплуатацию систем электроснабжения.

  2. Безопасность при эксплуатации.

studfiles.net

Нормальные схемы электрических соединений объектов электроэнергетики

 Правила выполнения нормальных схем электрических соединений объектов электроэнергетики, определены двумя стандартами. Это Стандарт Организации ОАО «ФСК ЕЭС» СТО 56947007-25.040.70.101-2011 Раздел 2 и ГОСТ Р 56303-2014.

 Несмотря на то, что на данный момент оба стандарта действующие и определяют требования к выполнению одних и тех же типов схем, требования в них, несколько отличаются (вероятно разработчики стандартов не дружат …).

 В данном материале, при составлении примеров графических обозначений элементов схем электрических соединений объектов электроэнергетики, за основу взят ГОСТ Р 56303-2014, так как по дате введения в действие он новее.
 Если вид графических обозначений, приведенных в примерах стандарта СТО 56947007-25.040.70.101-2011, отличается от аналогичных, приведенных в ГОСТ Р 56303-2014, добавлены соответствующие примечания.

 

Цветовое исполнение классов напряжения.
Класс напряженияГОСТ Р 56303-2014СТО 56947007-25.040.70.101-2011
Наименование цветаСпектр (RGB)Наименование цветаСпектр (RGB)
1150 кВсиреневый205:138:255сиреневый205:138:255
800 кВтемно синий0:0:168темно синий0:0:200
750 кВтемно синий0:0:168темно синий0:0:200
500 кВкрасный213:0:0красный165:15:10
400 кВоранжевый255:100:30оранжевый240:150:30
330 кВзеленый0:170:0зеленый0:140:0
220 кВжелто-зеленый181:181:0желто-зеленый200:200:0
150 кВхаки170:150:0хаки170:150:0
110 кВголубой0:153:255голубой0:180:200
60 кВлиловый255:51:204
35 кВкоричневый102:51:0коричневый130:100:50
20 кВярко-фиолетовый160:32:240коричневый130:100:50
15 кВярко-фиолетовый160:32:240
10 кВфиолетовый102:0:204фиолетовый100:0:100
6 кВтемно-зеленый0:102:0светло-коричневый200:150:100
3 кВтемно-зеленый0:102:0
ниже 3 кВсерый127:127:127
до 1 кВсерый190:190:190

Условные графические обозначения элементов нормальных схем электрических соединений объектов электроэнергетики.

В примерах, использованы условные графические обозначения из библиотеки трафаретов Visio Нормальная схема ПС.

Шаг модульной сетки 2,5 мм.

Толщина линий условных обозначений и линий электрической связи 0,4 мм (По стандарту от 0,2 до 1,0 мм. Рекомендуемая — от 0,3 до 0,4 мм.)

Графическое обозначение трансформаторов.

 

Графическое обозначение коммутационных аппаратов.

 

 Графическое обозначение устройств компенсации, фильтров.

 

Графическое обозначение разрядников, ОПН.

 

Графическое обозначение генераторов, электродвигателей.

 

Графическое обозначение предохранителей.

 

Графическое обозначение линий электрической связи, шин, заземления.
 НаименованиеОбозначение
 1. Линия электрической связи, ошиновка.
 2.

 ЛЭП — линия электропередач.

 Отображается утолщенными линиями (двухкратное или большее увеличение толщины по отношинию к линиям, которыми выполнены УГО и ошиновка).

 3.

  Кабельная линия.

 Линию электрической связи с одним ответвлением допускается изображать без точки.

 

 
 4. Пересечение линий электрической связи. 
 5.

 Ответвления линии электрической связи.

 Точка соединения, должна выполняться цветом, соответствующим классу напряжения линий электрической связи.

 Линию электрической связи с одним ответвлением допускается изображать без точки.

 
 6.

 Шина.

 Выполняться цветом, соответствующим классу напряжения, а точки подключения отводов, белым.

 
 7. Заземление. 
Примечания:
 1. Для линий электропередач (п. 2,3), в СТО 56947007-25.040.70.101-2011, особых указаний не найдено. Вероятно, их толщина, по этому стандарту, равна толщине линий электрической связи.

 

 Пример изображения нормальной схемы электрических соединений условной подстанции, выполненной по ГОСТ Р 56303-2014 (формат PDF).

Схема выполнена в программе Visio с использование библиотеки трафаретов:

Как начертить нормальную схему электрических соединений объекта электроэнергетики (электрической подстанции, распределительного устройства)

 


Добавить комментарий

elektroshema.ru

определение, устройство, виды конструкций и обозначение на схеме

Большинство начинающих радиолюбителей да и просто тех, кто увлекается радиотехникой, интересуют вопросы о том, что такое трансформатор, как он работает и для чего служит. На самом деле все очень просто: трансформатор служит для преобразования переменного тока из одного значения с определённой частотой (параметром) в другое с идентичным параметром.

Устройство трансформатора

В соответствии с ГОСТ 16110 −82, определение трансформатора выглядит следующим образом: трансформатор — это электромагнитное устройство статистического типа, которое оснащено двумя или более обмотками, обладающими индуктивной связью, и предназначенное для преобразования одной или нескольких систем переменного тока в одну или несколько других систем.

Это электромагнитное изделие обладает простой конструкцией, состоящей из следующих элементов: магнитопровод (магнитной системы), обмотки, обмоточные каркасы, изоляция (не во всех трансформаторах), система охлаждения. дополнительные элементы. На практике производители для изготовления трансформаторов используют одну из трёх базовых концепций:

  1. Стержневая. Обмотки наматываются на крайние стержни.
  2. Броневая. Боковые стенки остаются без обмоток.
  3. Тороидальная. Обладает формой кольца с равномерной намоткой обмоток по всей окружности.

Стоит отметить, что выбор той или иной концепции не оказывает влияния на конечные параметры трансформатора и не сказывается на эксплуатационной надёжности, но, тем не менее существенно различается по технологии изготовления.

Магнитная система

Магнитопроводы для трансформатора обладают определённой геометрической формой и изготавливаются из ряда материалов, к которым относится электротехническая сталь, пермаллой, феррит или иной материал, обладающий ферромагнитными свойствами. В зависимости от материала и конструкции магнитопровод может набираться из пластин, прессоваться, навиваться из тонкой ленты, собираться из двух, четырех и более «подков».

В качестве каркаса для размещения основных обмоток выступают стержни. Они могут обладать различным пространственным расположением, в зависимости от которого различают несколько видов систем.

  1. Плоская магнитная система с продольными осями стержней и ярм, расположенными в одной плоскости.
  2. Пространственная система, где продольные оси стержней располагаются в разных плоскостях.
  3. Симметричняа система, оснащённая идентичными стержнями, которые обладают одинаковым взаимным расположением по отношению к ярмам.
  4. Несимметричная система, состоящую из стержней, некоторые из которых могут отличаться по форме, конструкции и размерам, с различным взаимным расположением по отношению к ярмам.

Конструкция обмотки

Обмотка — это основной элемент трансформатора. Она представляет собой многовитковую конструкцию, изготовленную из одной или нескольких медных (реже алюминиевых) проволок различного диаметра. Как правило, в силовых трансформаторах используются проводники с квадратным сечением, которое позволяет более эффективно использовать имеющееся пространство, за счёт чего увеличивается коэффициент заполнения (К).

Для предотвращения возникновения короткого замыкания каждая обмотка изолируется. В качестве изолирующего материала может быть использована специальная бумага или эмалевый лак. Кстати, если для изготовления обмотки были использованы две отдельно изолированные и параллельно соединённые проволоки, то они могут быть оснащены общей бумажной изоляцией.

Топливный бак

Бак является одним из важнейших дополнительных элементов трансформатора. Он представляет собой ёмкость, предназначенную для хранения трансформаторного масла, а также обеспечения физической защиты активного компонента. Кроме того, корпус бака предназначен для монтажа вспомогательного оборудования и управляющего устройства.

Одним из внутренних элементов бака является сильноточный резонатор. Он подвержен быстрому и частому перегреву в моменты увеличения номинальной мощности и трансформаторных токов. Для снижения риска перегрева вокруг резонаторов устанавливают вставки из немагнитных материалов.

Внутреннее покрытие бака изготавливается из токопроводящих щитков, которые не пропускают магнитные потоки через стены ёмкости. Иногда встречается покрытие, которое изготавливается из материала, обладающего низким магнитным сопротивлением. Такой вариант покрытия поглощает внутренние потоки до подхода к стенкам бака.

Перед заменой топлива из бака выкачивают воздух с целью предотвратить снижение диэлектрической прочности изоляции трансформатора. Из этого наблюдается дополнительное предназначение бака, которое заключается в выдерживании давления атмосферы с минимальной деформацией.

Принцип работы

Трансформаторы функционируют на основании двух принципов: электромагнетизма — создания изменяющегося во времени магнитного потока под воздействием электрического тока, который также изменяется, и электромагнитной индукции — наводки ЭДС (электродвижущей силы), вследствие изменения магнитного потока, проходящего через обмотку.

Включение трансформатора происходит после подачи напряжения на первичную обмотку. Совместно с напряжением на обмотку поступает и переменный ток, участвующий в образовании переменного магнитного потока в магнитопроводе. Это создаёт ЭДС во всех обмотках устройства.

Выходное напряжение (вторичная обмотка) сложным образом связано с формой входного напряжения. Эти сложности обусловили создание линейки новых трансформаторов, которые начали использовать для решения альтернативных задач, например, усиления тока, умножения частоты и генерации сигналов.

Функциональные режимы

Трансформаторы могут функционировать в трёх режимах: холостого хода (ХХ) — 1, нагрузки — 2 и короткого замыкания — 3.

Режим 1: ХХ. Особенностью этого режима является то, что вторичная трансформаторная цепь находится в разомкнутом состоянии, поэтому по ней ток не протекает. В таком положении цепи токовый потенциал равен нулю, что создаёт в первичном контуре ток холостого хода, обладающего реактивной и активной составляющей. Эта ЭДС способна полностью компенсировать питающее напряжение. Такой режим используется для определения КПД и уровня потерь в сердечнике.

Режим 2: нагрузки. В этом режиме привычная обмотка трансформатора запитывается от стороннего источника питания, а к вторичной цепи подключается нагрузка. После подключения нагрузки по вторичной цепи начинает протекать ток, который создаёт магнитный поток, направленный в противоположную сторону от потока первичной обмотки. Это провоцирует неравенство между двумя силами — индукции и источника питания, что увеличивает ток, который протекает по первичной обмотке до момента возращения магнитного потока в первоначальное значение. Этот режим является основным рабочим режимом для трансформаторов.

Режим 3: КЗ. Для получения этого режима вторичный контур трансформатора замыкается накоротко, а к первичной обмотке подводится низкое переменное напряжение. Значение входного напряжения выбирают таким, чтобы ток КЗ получился равным номинальному. Такой режим используют для определения потерь на нагрев обмоток в цепи трансформатора.

Виды изделий

С 30 ноября 1876 года, считающегося датой создания первого трансформатора, прошло уже достаточно много времени. За этот период устройства были значительно изменены как в конструктивном плане, так и по характеристикам. На сегодняшний день существуют следующие виды трансформаторов:

  • Силовой трансформатор переменного тока. Такие трансформаторы применяются в сетях энергоснабжения и электроустановках, которые предназначены для приёма и использования электроэнергии. Эти трансформаторы используются из того, что по всей длине трассы присутствуют различные рабочие напряжения, например, на ЛЭП (линии электропередачи) оно может варьироваться от 0,035 до 0,75 МВ (мегавольт), а в трансформаторных подстанциях равняется 400 В, которые впоследствии преобразуются в привычные 220/380 В.
  • Автотрансформатор. Вариант трансформатора с прямым соединением первичной и вторичной обмотки, которое создаёт не только электромагнитную, но и электрическую индукцию. Автотрансформаторы оснащаются многовыводными обмотками, чьё минимальное количество равняется трём. Они используются в качестве элемента, соединяющего эффективно заземлённые сети напряжением от 0,11 МВ с коэффициентом трансформации от 3 до 4. Автотрансформаторы обладают двумя ключевыми преимуществами и одним небольшим недостатком. К первым относятся экономичность (из-за снижения расходов на покупку меди для обмоток и стали для сердечника) и высокий КПД — из-за частичного преобразования входной мощности. Недостаток — это отсутствие гальванической развязки — электрической изоляции между первичной и вторичной цепью.
  • Трансформатор тока. Устройство с первичной обмоткой, запитывающейся от стороннего источника тока, при этом вторичную цепь стараются изготовить таким образом, чтобы она работала в режиме близком к короткому замыканию. Подключение первичной обмотки производится последовательно к цепи с нагрузкой. В этой цепи протекает переменный ток, который нужно контролировать. Для приближения к режиму КЗ к вторичной цепи подключают вольтметры или индикаторы, например, реле или светодиод. Наличие дополнительных элементов во вторичной цепи обусловило одну из областей применения подобных трансформаторов, заключающуюся в снижении токов первичной обмотки до значений, которые могут использоваться в целях измерения, защиты, управления и сигнализации.
  • Сварочный трансформатор. Устанавливается в сварочных аппаратах и используется для преобразования сетевого напряжения 220/380 вольт в более низкие значения, а также для повышения уровня тока. Ток можно регулировать изменением индуктивного сопротивления или вторичного напряжения ХХ. Это выполняется секционированием числа витков первичной или второй обмотки соответственно.
  • Разделительный трансформатор. Отличается от остальных устройств подобного типа отсутствием электрической связи между первичной и вторичной обмотками. Разделительные устройства применяются в электросетях с целью обеспечения безопасности людей при обрыве линий или других чрезвычайных происшествиях, которые могут нанести вред, а также с целью обеспечения гальванической развязки.

Обозначение на схемах

Трансформатор на схеме обозначается следующим образом: по центру чертится толстая линия, которая отображает сердечник, слева от неё в вертикальной плоскости изображается катушка (витками к сердечнику) — первичная обмотка, а справа ещё одна или несколько катушек — вторичные обмотки.

В общем случае схематическое отображение линии, обозначающей сердечник, должно соответствовать толщине витков изображённых катушек. При необходимости подчёркивания материала или особенностей конструкции сердечника на схеме немного видоизменяют центральную линию. Так, классический ферритовый сердечник обозначают сплошной жирной линией, а сердечник, обладающий магнитным зазором, — тонкой линией с разрывом посередине. Магнитодиэлектрические сердечники отображаются тонкой пунктирной линией.

220v.guru

Структура условного обозначения измерительных трансформаторов напряжения. Обозначение трансформатора тока на схеме


Маркировка вторичных цепей трансформаторов тока

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Я уже знакомил Вас с требованиями по цветовой маркировке шин и проводов.

В данной статье я хочу рассказать Вам про цифровую и буквенную маркировку вторичных цепей трансформаторов тока.

В последнее время я часто замечаю, что маркировку токовых цепей выполняют совершенно не правильно.

Например, маркируют любыми взятыми из головы цифрами или буквами. А бывает и так, что маркировка вообще отсутствует. Причем зачастую в этом виноваты не монтажники, а специалисты, которые разрабатывали проект — монтажники лишь выполняют все по проекту.

В данной статье я хочу Вас призвать к соблюдению правил маркировки вторичных цепей ТТ, ведь она очень удобна для распознавания проводников при обслуживании и эксплуатации.

Признаюсь Вам, что на обслуживаемых мною подстанциях (их  более 100) маркировка вторичных цепей выполнена не идеально — имеются, как старые обозначения, так и новые. Изменять старые обозначения я не собираюсь, но вот когда вводится новый объект (фидер, подстанция), то я обязательно проверяю маркировку на соответствие нормативному техническому документу (НТД).

Итак, единственный документ, который существует по маркировке токовых цепей (и не только) — это руководящие материалы (РУМ) Минэнерго СССР 10260ТМ-Т1, которые были разработаны и введены в действие еще 1 апреля 1981 года производственно-техническим отделом института «Энергосетьпроект» (г.Москва).

Что же там говорится о маркировке?

Запомните!!! Для маркировки вторичных цепей ТТ используется нумерация с 401 по 499. Есть исключение, но об этом я расскажу чуть ниже.

 

Основное правило маркировки

Перед цифрой всегда должна стоять буква соответствующей фазы (А, В, С) в зависимости от того, где установлен трансформатор тока. Если трансформатор тока установлен в нуле, то используется буква «N».

Первая цифра всегда «4».

Вторая цифра — это номер группы обмоток трансформаторов тока, согласно схемы (например, ТА, ТА1, ТА2…ТА9).

Третья цифра — от 1 до 9. Она обозначает последовательную маркировку от одного устройства или прибора (амперметры, преобразователи тока, обмотки реле, счетчиков и ваттметров) к другому. Т.е. в токовой цепи может быть включено не более 9 приборов.

Если в Вашей токовой цепи последовательно включено более 9 устройств или приборов, хотя я такое не встречал на практике, то третья цифра будет находиться в пределах от 10 до 99, т.е. нумерация будет начинаться с 4010 и заканчиваться 4099. Но это скорее всего частный случай.

Перейдем к примерам, чтобы легче понять вышесказанное.

1. Один трансформатор тока

Рассмотрим пример, когда на фидере (присоединении) установлен один трансформатор тока в фазе «С» для подключения щитового амперметра.

Таким образом, маркировка токовых цепей у нас будет следующая:

  • ТТ установлен в фазе «С», значит первой буквой в маркировке будет «С»
  • первая цифра всегда «4»
  • вторая цифра — «0», т.к. трансформатор тока обозначен по схеме, как «ТА»
  • третья цифра — нумерация от 1 до 9

Вот схема подключения амперметра через трансформатор тока:

С вывода И1 трансформатора тока провод с маркировкой «С401» идет на амперметр (РА), а с него уходит «С402» на вывод И2. В точке И2 вторичная цепь заземляется (на фото ниже видна перемычка с клеммы И2 на болт заземления).

Это щитовой амперметр типа Э30.

2. Два трансформатора тока (схема неполной звезды)

В этом примере на фидере установлены два трансформатора тока на фазе «А» и «С».

Таким образом, токовые цепи для фазы «А» будут маркироваться следующим образом:

  • ТТ установлен в фазе «А», значит первой буквой будет «А»
  • первая цифра всегда «4»
  • вторая цифра —  «0», т.к. группа трансформаторов тока обозначена по схеме, как «ТА»
  • третья цифра — нумерация от 1 до 9

Токовые цепи для фазы «С»:

  • ТТ установлен в фазе «С», значит первой буквой будет «С»
  • первая цифра всегда «4»
  • вторая цифра —  «0», т.к. группа трансформаторов тока обозначена по схеме, как «ТА»
  • третья цифра — нумерация от 1 до 9

Для примера рассмотрим схему подключения амперметра и двухэлементного счетчика САЗУ-ИТ:

С вывода И1 трансформатора тока фазы «А» провод с маркировкой «А401» идет на амперметр (РА), с амперметра «А402» идет  на обмотку счетчика, а с нее уходит на вывод И2. Аналогично по фазе «С» — провод с маркировкой «С401» идет на обмотку счетчика, а с нее —  на вывод И2. Нулевая (общая) цепь обозначается, как «N401» и заземляется.

Двухэлементный счетчик САЗУ-ИТ.

xn—-7sbeb3bupph.xn--p1ai

Чтение схем: трансформаторы, автотрансформаторы. | Каталог самоделок

В основы обозначений трансформаторов и автотрансформаторов на электротехнических схемах принимаются обозначения обмоток, корпуса, магнитопроводов,  экрана, а также и обозначения типов соединения обмоток. Давайте все это рассмотрим поподробнее.

Обмотки.   В схемах (обычно в схемах электроснабжения) обмотки обозначают в виде окружности, которая проиллюстрирована на  рис. № 1.  Во всех других случаях обмотки иллюстрируются полуокружностями №№ 2-5, причем количество полуокружностей и направления выводов не устанавливается. А изображенная на рис № 3 точка, рядом с обмоткой, обозначает начало обмотки.

На электротехнических схемах, при изображении обмоток окружностями, иногда, в них вписываются обозначения №№ 13-23   вида соединения, которые приведены на рисунке ниже. Здесь под обозначениями, которые состоят из черточек, приведены поясняющие схемы.

На рисунке: № 13  – однофазная обмотка с двумя выводами. № 14 – однофазная обмотка с двумя выводами  с выведенной нейтральной (средней) точкой. № 15  – соединение обмоток двух фаз в открытый треугольник. № 16 – три однофазные обмотки, каждая из которых имеет по два вывода.  № 17 – трехфазная обмотка, соединенная в «звезду». № 18  – также трехфазная обмотка, соединенная в звезду с выведенной нейтралью. № 19  трехфазная обмотка, соединенная в треугольник. № 20 – трехфазная обмотка, где три фазы соединены в разомкнутый треугольник. № 21 – трехфазная обмотка, соединенная в зигзаг. № 22 – шестифазная обмотка, которая соединена в виде обратной звезды. № 23 – то же, что и № 22, только с выведенными раздельными нейтральными точками.

Магнитопроводы. В схемах электроснабжения магнитопроводы допускается не иллюстрировать, если это, конечно, не вызывает затруднений и путаницу в схемах. Во всех других случаях этот элемент изображается обозначениями №№ 7—10. Здесь №7 — магнитопровод ферромагнитный.

(Обратите внимание: до недавнего времени у магнитопровода было другое обозначение: 3 – тонкие черты, как бы представляющие листы стали, из которых набран магнитопровод). Затем магнитопровод стали изображать жирной чертой. В настоящее время у обозначений, толщина линий, обозначающих магнитопровод и обмотку, одинакова.

№ 8 — ферромагнитный магнитопровод с воздушным зазором. Небольшой воздушный зазор нужен в том случае, когда по обмотке проходит не только переменный, но и постоянный ток, который при отсутствии зазора мог бы насытить магнитопровод;

№ 9 — магнитодиэлектрический магнитопровод. Такие магнитопроводы применяются в радиосвязи для уменьшения потерь на вихревые токи. В этих сердечниках ферромагнитные частицы разделены массой изоляционного материала.

№ 10 — магнитопровод из немагнитного материала, например из алюминия или меди. Для немагнитного магнитопровода указывают химический символ металла. Например, буквы Cu указывают на то, что магнитопровод медный. Магнитопровод из немагнитного материала играет такую же роль, как множество короткозамкнутых витков, введенных в магнитное поле обмотки. В немагнитном магнитопроводе водятся вихревые токи, магнитное поле которых противодействует основному полю, чем достигается уменьшение индуктивности.

Корпус трансформатора и автотрансформатора – на схемах обычно не изображается. Если же надо показать, что корпус присоединен к чему-либо, то это иллюстрируется обозначением № 12. Нередко корпус трансформатора соединяется с экраном.  Корпуса трансформаторов приходится так же показывать и в некоторых схемах релейной защиты.  Экран обозначается тонкой штриховой линией № 6. Подробнее про обозначения экранов, можете прочитать тут.

На обозначении № 11 проиллюстрирован регулятор, здесь он показывает, что в сборке имеется трансформаторы с регулированием напряжения с нагрузкой.

Примеры обозначений трансформаторов даны на рисунке ниже.

В разделе «а» показано однолинейное – 1, и многолинейное  – 2 обозначение однофазного трансформатора с ферромагнитным сердечником (форма I). 3 – изображение этого же трансформатора в форме II.  В разделе «б»   изображены: № 4 – трансформатор с ферромагнитным магнитопроводом, который имеет воздушный зазор. № 5   трансформатор с медным (немагнитным) магнитопроводом. № 6 – трансформатор магнитодиэлектрическим магнитопроводом. № 7 – без магнитопровода.

Автотрансформаторы. Однофазный автотрансформатор в однолинейном и многолинейном изображениях проиллюстрирован ниже на рисунке по обозначениями 1 и 2 соответственно. Хорошим примером применения этих однофазных трансформаторов является: № 3 понижения напряжения сети с 220 вольт для питания прибора (например, холодильника) на напряжение в 127 вольт. № 4 показывает повышение напряжения с 127 до 220 В. Также в разделе «б» изображены трехфазные автотрансформаторы, где № 5 показывает, что обмотки соединены в звезду, а № 6 – трехфазный трансформатор с 9-ю выводами.

Как Вы видите, чтение схем не очень то и тяжелая вещь, самое главное уметь логически связать обозначения.

volt-index.ru

Структура условного обозначения измерительных трансформаторов напряжения.

Обозначения типов сухих и масляных измерительных трансформаторов напряжения состоят из букв и цифр:
например, НОС–0,5; HOAV 35–66; ЗНОМ–35–65; НТМИ–10; НКФ–110–58

Ø Н – напряжение,

Ø О – однофазный,

Ø Т – трехфазный,

Ø М – масляный,

Ø К – каскадный или с компенсационной обмоткой,

Ø 3 – с заземленным вводом высшего напряжения,

Ø И – с обмоткой для контроля изоляции,

Ø Ф – в фарфоровом корпусе;

Ø первая цифра после букв обозначает напряжение, вторая – год разработки.

Ø На щитках трансформатора дробью указывают:

Ø в числителе – типовую мощность, кВ∙А;

Ø в знаменателе – напряжение, кВ.

Проходные измерительные трансформаторы, предназначенные для использования в качестве ввода и устанавливаемые в проемах стен, потолков или в металлических конструкциях;

Опорные измерительные трансформаторы предназначены для установки на опорной плоскости;

Встраиваемые измерительные трансформаторы, предназначенные для установки в полости электрооборудования

Проходной измерительный трансформатор

Опорный измерительный трансформатор

Измерительный трансформатор напряжения

Встраиваемый измерительный трансформатор

Виды измерительных трансформаторов:

Основной критерий – тип измеряемого значения. Существуют измерительные трансформаторы тока и напряжения,которые работают на линиях с постоянным или переменным током;

По коэффициенту трансформации изделия могут быть многодиапазонными или однодиапазонными;

Если в качестве критерия брать способ установки, то можно выделить внешние, накладные, переносные, встраиваемые и внутренние трансформаторы;

В зависимости от конструкции устанавливают различные типы диэлектриков – масляные, газовые или сухие.

Схемы включения трансформаторов напряжения

Первичная обмотка включена на напряжение сети U1, а к вторичной обмотке (напряжение U2) присоединены параллельно катушки измерительных приборов и реле. Трансформатор напряжения в отличие от трансформатора тока работает в режиме, близком к холостому ходу.

1 – первичная обмотка; 2 – магнитопровод; 3 – вторичная обмотка

Назначение обмоток

Двухобмоточный трансформатор – трансформатор напряжения, имеющий одну вторичную обмотку напряжения.

Трёхобмоточный трансформатор напряжения – трансформатор напряжения, имеющий две вторичные обмотки: основную и дополнительную.

Каскадный трансформатор напряжения

Трансформатор напряжения, первичная обмотка которого разделена на несколько последовательно соединенных секций, передача мощности от которых к вторичным обмоткам осуществляется при помощи связующих и выравнивающих обмоток.



 

cyberpedia.su