Транзистор mpts – что делает, где применяется, режимы работы биополярного транзистора

Содержание

Полевой транзистор с управляющим PN-переходом JFET


Полевой транзистортранзистор, в котором сила проходящего через него тока регулируется внешним электрическим полем, т.е напряжением.
Это принципиальное различие между ним и биполярным транзистором, где сила основного тока регулируется управляющим током.


Поскольку у полевого транзистора нет управляющего тока, то у него очень высокое входное сопротивление,
достигающее сотен ГигаОм и даже ТерраОм (против сотен КилоОм у биполярного транзистора).


Еще полевые транзисторы иногда называют униполярными, поскольку носителями электрического
заряда в нем выступают только электроны или только дырки. В работе же биполярного транзистора,
как следует из названия, участвует одновременно два типа носителей заряда – электроны и дырки.

Классификация полевых транзисторов


Полевые транзисторы (FET: Field-Effect-Transistors)
разделяются на два типа – полевой транзистор с управляющим PN-переходом
(JFET: Junction-FET) и полевой транзистор с изолированным затвором
(MOSFET: Metal-Oxid-Semiconductor-FET).


Каждый из типов может быть как с N–каналом, так и с P-каналом.
У транзисторов с N-каналом в роли носителей электрического заряда выступают электроны.
У транзисторов с P-каналом – дырки. В этой статье речь пойдет о полевом транзисторе с управляющим PN-переходом JFET c N-каналом.
Принцип работы транзистора P-типа аналогичен, только меняется полярность источников напряжения.

Устройство полевого транзистора JFET с N-каналом


Как показано на рисунке ниже, область полупроводника
N-типа формирует канал между зонами P-типа. Электроды,
подключаемые к концам N-канала, называются сток и исток.
Полупроводники P-типа электрически соединяются между собой
(закорачиваются), и представляют собой один электрод – затвор.


Вблизи стока и истока находятся области повышенного легирования N+.
T. e. зоны с повышенной концентрацией электронов. Это улучшает проводимость канала.
Кроме этого, наличие областей N+ ослабляет эффект появления паразитических PN-переходов
в случае присоединения проводников из трехвалентного алюминия.


Имена электродов сток и исток носят условный характер. Если взять отдельный полевой транзистор,
не подключенный к какой-либо схеме, то не будет иметь значения какая ножка корпуса сток, а какая исток.
Имя электрода будет зависеть от его расположения в электрической цепи.

Работа полевого транзистора JFET с N-каналом

1. Напряжение на затворе Uзи = 0


Подключим источник положительного напряжения к стоку, землю к истоку. Затвор также подсоединим к земле (Uзи = 0).
Начнем постепенно повышать напряжение на стоке Uси. Пока Uси низкое, ширина канала максимальна.
В таком состоянии полевой транзистор ведет себя как обычный проводник.
Чем больше напряжение между стоком и истоком Uси, тем больше ток через канал между стоком и истоком Iси.
Это состояние еще называют омическая область.


При повышении Uси, в полупроводнике N-типа в зонах PN-перехода постепенно
снижается количество свободных электронов – появляется обедненный слой.
Этот слой растет несимметрично – больше со стороны стока,
поскольку туда подключен источник напряжения.
В результате канал сужается настолько, что при дальнейшем повышении Uси,
Iси будет расти очень незначительно. Это состояние называют режим насыщения.

2. Напряжение на затворе Uзи


Когда транзистор находится в режиме насыщения, канал относительно узкий.
Достаточно подать небольшое отрицательное напряжение на затвор Uзи,
для того чтобы еще сильнее сузить канал и значительно уменьшить ток Iси
(для транзистора с P-каналом на затвор подается положительное напряжение ).
Если продолжить понижать Uзи, канал будет сужаться, пока полностью не закроется,
и ток Iси не прекратится. Значение Uзи, при котором ток Iси останавливается,
называется напряжение отсечки (Uотс).


Для усиления сигнала полевой транзистор JFET используют в режиме насыщения,
так как в этом состоянии вследствие небольших изменений Uзи сильно меняется Iси.
Параметр усилительной способности JFET – это крутизна стоко-затворной характеристики
(Mutual Transconductance). Обозначается gm или S, и измеряется в mA/V (милиАмпер/Вольт).

Преимущества и недостатки полевого транзистора JFET

Высокое входное сопротивление


Одно из важнейших свойств полевых транзисторов, как уже упоминалось выше, это очень высокое входное сопротивление Rвх (Rin).
Причем у полевых транзисторов с изолированным затвором MOSFET, Rin в среднем еще на несколько порядков выше, чем у JFET.
Благодаря этому, полевые транзисторы практически не потребляют ток у источников сигнала, который надо усилить.


Например, цифровая схема микроконтроллера генерирует сигнал, управляющий работой электромотора.
Такого рода схема обычно располагает очень малым током на выходе, что явно недостаточно для двигателя.
Здесь потребуется усилитель, потребляющий крайне мало тока на входе,
и выдающий на выходе сигнал такой же формы и частоты как на выходе у микроконтроллера,
только уже с большим выходным током. Здесь как раз и подойдет усилитель,
основанный на JFET транзисторе с высоким входным сопротивлением.

Низкий коэффициент усиления по напряжению


Значительным недостатком JFET по сравнению с биполярным транзистором является очень низкий коэффициент усиления по напряжению.
Если построить усилитель на основе одного прибора JFET, можно добиться Vout/Vin в лучшем случае около 20.
При аналогичном использовании биполярного транзистора с высокой β
(коэффициент усиления биполярного транзистора – ток коллектора/ток базы)
можно достигнуть Vout/Vin в несколько сотен.


Поэтому для качественных усилителей нередко используются совместно оба типа транзисторов.
Например, благодаря очень высокому Rin полевого транзистора, добиваются большого усиления сигнала по току.
А уже потом, с помощью биполярного транзистора усиливают сигнал по напряжению.


О других преимуществах и недостатках полевых транзисторов, вы можете почитать здесь

hightolow.ru

что это такое? Применение и проверка транзисторов

В статье вы узнаете про транзисторы MOSFET, что это, какие схемы включения бывают. Есть тип полевого транзистора, у которого вход электрически изолирован от основного тока несущего канала. И поэтому называется он полевой транзистор с изолированным затвором. Наиболее распространенным типом такого полевого транзистора, который используется во многих типах электронных схем, называется полевой транзистор металл-оксид-полупроводник на основе перехода или же МОП-транзистор (сокращенная аббревиатура этого элемента).

Что такое MOSFET транзисторы?

МОП-транзистор представляет собой управляемый напряжением полевой транзистор, который отличается от полевого тем, что он имеет «металл-оксид» электрод затвора, который электрически изолирован от основного полупроводника п-каналом или каналом р-типа с очень тонким слоем изолирующего материала. Как правило, это диоксид кремния (а если проще, то стекло).

Этот ультратонкий изолированный металлический электрод затвора можно рассматривать как одну пластину конденсатора. Изоляция управляющего входа делает сопротивление МОП-транзистора чрезвычайно высоким, практически бесконечным.

Как и полевые, МОП-транзисторы имеют очень высокое входное сопротивление. Может легко накапливать большое количество статического заряда, который приводит к повреждению, если тщательно не защищены цепи.

Отличия МОСФЕТ от полевых транзисторов

Основное отличие от полевых в том, что МОП-транзисторы выпускаются в двух основных формах:

  1. Истощение – транзистор требует напряжения затвор-исток для переключения устройства в положение «Откл». Режим истощения МОП-транзистора эквивалентно «нормально закрытому» переключателю.
  2. Насыщение – транзистор требует напряжения затвор-исток, чтобы включить устройство. Режим усиления МОП-транзистора эквивалентно коммутатору с «нормально замкнутыми» контактами.

Графические обозначения транзисторов на схемах

Линия между соединениями стока и истока представляет собой полупроводниковый канал. Если на схеме, на которой изображены MOSFET транзисторы, она представлена жирной сплошной линией, то элемент работает в режиме истощения. Так как ток из стока может протекать с нулевым потенциалом затвора. Если линия канала показана пунктиром или ломанной, то транзистор работает в режиме насыщения, так как течет ток с нулевым потенциалом затвора. Направление стрелки указывает на проводящий канал, р-типа или полупроводниковый прибор п-типа. Причем отечественные транзисторы обозначаются точно так же, как и зарубежные аналоги.

Базовая структура MOSFET транзистора

Конструкция MOSFET (что это, рассказано в статье подробно) очень отличается от полевых. Оба типа транзисторов используют электрическое поле, создаваемое напряжением на затворе. Чтобы изменить поток носителей заряда, электронов для п-канала или отверстия для р-канала, через полупроводящий канал сток-исток. Электрод затвора помещен на вершине очень тонким изолирующим слоем, и есть пара небольших областей п-типа только под сток и исток электродов.

При помощи изолированного устройства затвора для МОП-транзистора никаких ограничений не применяется. Поэтому можно соединять с затвором полевого МОП-транзистора источник сигнала в любой полярности (положительный или отрицательной). Стоит отметить, что чаще встречаются импортные транзисторы, нежели их отечественные аналоги.

Это делает MOSFET устройства особенно ценными в качестве электронных переключателей или логических приборов, потому что без воздействия извне они, как правило, не проводят ток. И причина этому высокое входное сопротивление затвора. Следовательно, очень маленький или несущественный контроль необходим для МОП-транзисторов. Ведь они представляют собой устройства, управляемые извне напряжением.

Режим истощения МОП-транзистора

Режим истощения встречается значительно реже, нежели режимы усиления без приложения напряжения смещения к затвору. То есть, канал проводит при нулевом напряжении на затворе, следовательно, прибор «нормально закрыт». На схемах используется сплошная линия для обозначения нормально замкнутого проводящего канала.

Для п-канального МОП-транзистора истощения, отрицательное напряжение затвор-исток отрицательное, будет истощать (отсюда название) проводящий канал своих свободных электронов транзистора. Аналогично для р-канального МОП-транзистора обеднение положительного напряжения затвор-исток, будет истощать канал своих свободных дырок, переведя устройство в непроводящее состояние. А вот прозвонка транзистора не зависит от того, какой режим работы.

Другими словами, для режима истощения п-канального МОП-транзистора:

  1. Положительное напряжение на стоке означает большее количество электронов и тока.
  2. Отрицательное напряжение означает меньше электронов и ток.

Обратные утверждения также верны и для транзисторов р-канала. Тогда режим истощения МОП-транзистора эквивалентно «нормально разомкнутому» переключателю.

N-канальный МОП-транзистор в режиме истощения

Режим истощения МОП-транзистора построен таким же образом, как и у полевых транзисторов. Причем канал сток-исток – это проводящий слой с электронами и дырками, который присутствует в п-типа или р-типа каналах. Такое легирование канала создает проводящий путь низкого сопротивления между стоком и источника с нулевым напряжением. Используя тестер транзисторов, можно провести замеры токов и напряжений на его выходе и входе.

Режим усиления МОП-транзистора

Более распространенным у транзисторов MOSFET является режим усиления, он обратный для режима истощения. Здесь проводящий канал слаболегированный или даже нелегированный, что делает его непроводящим. Это приводит к тому, что устройство в режиме покоя не проводит ток (когда напряжение смещения затвора равно нулю). На схемах для обозначения МОП-транзисторов такого типа используют ломаную линию, чтобы обозначить нормально открытый токоизолирующий канал.

Для повышения N-канального МОП-транзистора ток стока будет течь только тогда, когда напряжение на затворе прикладывается к затвору больше, чем пороговое напряжение. При подаче положительного напряжения на затвор к п-типа MOSFET (что это, режимы работы, схемы включения, описаны в статье) привлекает большее количество электронов в направлении оксидного слоя вокруг затвора, тем самым увеличивая усиление (отсюда название) толщины канала, позволяя свободнее протекать току.

Особенности режима усиления

Увеличение положительного напряжения затвора вызовет появление сопротивления в канале. Это не покажет тестер транзисторов, он может только проверить целостность переходов. Чтобы уменьшить дальнейший рост, нужно увеличить тока стока. Другими словами, для режима усиления п-канального МОП-транзистора:

  1. Положительный сигнал транзистор переводит в проводящий режим.
  2. Отсутствие сигнала или же его отрицательное значение переводит в непроводящий режим транзистор. Следовательно, в режиме усиления МОП-транзистор эквивалентен «нормально разомкнутому» переключателю.

Обратные утверждения справедливы для режимов усиления р-канальных МОП-транзисторов. При нулевом напряжении устройство в режиме «Выкл» и канал открыт. Применение напряжения отрицательного значения к затвору р-типа у MOSFET увеличивает проводимость каналов, переводя его режим «Вкл». Проверить можно, используя тестер (цифровой или стрелочный). Тогда для режима усиления р-канального МОП-транзистора:

  1. Положительный сигнал переводит транзистор «Выкл».
  2. Отрицательный включает транзистор в режим «Вкл».

Режим усиления N-канального МОП-транзистора

В режиме усиления МОП-транзисторы имеют низкое входное сопротивление в проводящем режиме и чрезвычайно высокое в непроводящем. Также их бесконечно высокое входное сопротивление из-за их изолированного затвора. Режима усиления транзисторов используется в интегральных схемах для получения типа КМОП логических вентилей и коммутации силовых цепей в форме, как PMOS (P-канал) и NMOS (N-канал) входов. CMOS – это комплементарный МОП в том смысле, что это логическое устройство имеет как PMOS, так и NMOS в своей конструкции.

Усилитель на MOSFET

Так же, как и полевые, транзисторы MOSFET могут быть использованы для изготовления усилителей класса «А». Схемы усилителей с N-канальным МОП-транзистором общего исходного режима усиления, является наиболее популярной. На МОП-транзисторах усилители в режиме обеднения очень похожи на схемы с использованием полевых приборов, за исключением того, что MOSFET (что это, и какие типы бывают, рассмотрено выше) имеет более высокий входной импеданс.

Этот импеданс управляется по входу смещающей резистивной цепью, образованной резисторами R1 и R2. Кроме того, выходной сигнал для общего источника усилителя на транзисторах MOSFET в режиме усиления инвертируется, потому что, когда входное напряжение низкое, то переход транзистора разомкнут. Это можно проверить, имея в арсенале только лишь тестер (цифровой или даже стрелочный). При высоком входном напряжении транзистор во включенном режиме, на выходе напряжение крайне низкое.

fb.ru

Транзистор IGBT-принцип работы, структура, основные характеристики

Силовой транзистор IGBT управляется с помощью напряжения, подаваемого на управляемый электрод-«затвор», который изолирован от силовой цепи. Полное название прибора: биполярный транзистор с изолированным затвором.

Характерная черта для этого транзистора – очень малое значение управляющей мощности, использованной для коммутационных операций существенных токовых значений силовых цепей.

Рис. №1. Эффективность использования технологий на основе мощных IGBT-транзисторов

Преобладающее значение приобрело его использование в цепях силового предназначения для частотных преобразователей, для двигателей переменного тока, мощность, которых может доходить до 1 МВт. По своим вольтамперным характеристикам он считается аналогом биполярному транзистору, однако качественные энергетические показатели и чистота коммутационных действий намного выше, чем качество работы других полупроводниковых элементов.

Постоянно совершенствующиеся технологии позволяют улучшить качественные характеристики транзисторов. Созданы элементы, рассчитанные на большую величину напряжения, выше 3 кВ и большие значения тока до нескольких сотен ампер.

Основные характеристики мощных IGBT-транзисторов

 

  • Напряжение управления – это разрешенная проводимость, которая отпирает или запирает прибор.
  • Открытое проводящее состояние характеризуется падением напряжения, определяемым пороговым напряжением и внутренним сопротивлением, величина максимально допустимого тока.

Для применения в конструкции регуляторов скорости используются транзисторы, рассчитанные на рабочие частоты в пределах до нескольких десятков килогерц.

Преимущества IGBT транзисторов

  • Высокая плотность тока.
  • Практически отсутствие потерь статического и динамического типа.
  • Отсутствие управляющего тока позволяет не прибегать к использованию гальванически изолированных схем для работы и управления с применением дискретных элементов и предоставляет возможность создания интегральных схем – драйверов.
  • Стойкость к воздействию короткого замыкания.
  • Относительная простота параллельного соединения.

При разработке схем включения с транзисторами IGBT необходимо обращать внимание на ограничение значения максимального тока. Для этой цели используются следующие методы – это: правильный выбор параметров тока защиты и подбор резистора затвора Rg, а также применение цепей, которые формируют траекторию переключения.

Структура IGBT

Закрытое состояние прибора характеризуется напряжением, приложенным к области n-, она находится между коллектором и эмиттером. Проводящий канал появляется при воздействии на затвор положительно заряженного потенциала в p-области, он обозначается как пунктирная линия. Ток из балласта идет из области n- (с минусом) в область n+. При этом происходит открытие МОП-транзистора, что делает возможным открытие биполярного транзистора с p-n-p перехода транзистора.

Рис. №2. Структура транзистора IGBT.

Эквивалентом структуре транзистора IGBT можно считать схему подключения транзистора, где n-канальный полевой транзистор выполнит роль промежуточного звена (динамического сопротивления), уменьшаемого в открытом состоянии IGBT. Он пропускает через базовую область биполярного транзистора с p-n-p-переходом, при этом происходит уменьшение остаточного напряжения в области n-. Опасность для схемы может представлять так называемый «паразитный биполярный транзистор», он может перейти в открытое состояние, называемое эффектом защелкивания, что влечет потерю управляемости.

Рис. №3. Схема включения транзистора IGBT эквивалентная структуре транзистора.

Применение IGBT-транзистора

Одной из важных сфер использования солового транзистора – это использование в сетях с напряжением 6,5 кВ для создания безопасной и гарантированно надежной работы электроустановок в режиме короткого замыкания.

Для ограничения токов к. з. и приближению их к величине, которая не приведет к повреждениям оборудования. Они выполняют ограничение напряжения на затворе до уровня, не превышающем U = 15,3В. Это достигается с помощью применения следующих мер:

  1. Ограничение величины напряжения на затворе с помощью привязки к фиксированному уровню напряжения. Это возможно в том случае, если драйвер затвора обладает источником стабильного напряжения. Основной способ -добавление в схему диода с малым падением напряжения, например, диод Шотки. Высокая эффективность меры достигается снижением индуктивности цепи между клеммами источника и затвора.
  2. Ограничение значения напряжения на затворе с помощью присоединения в цепь между эмиттером и затвором — стабилитрона. Эффективность метода достигается максимально приближенным монтажом диодов к вспомогательным клеммам модуля. Для этой цели должны использоваться диоды с очень маленьким температурным дрейфом и разбросом, примером могут служить диоды ограничивающие переходные напряжения (диоды типа: 1,5КЕ6,8Са и 1,5КЕ7,5СА двунаправленные).
  3. Включение в схему отрицательной эмиттерной обратной связи. Этот метод возможен после подключения эмиттера драйвера затвора к основным клеммам эмиттера модуля. Эмиттерная связь обратного действия способствует эффективному ограничению напряжения на затворе.

Примеры расчета IGBT-транзистора

Выбор транзистора производится по следующим условиям, например, для преобразователей напряжения с резонансным контуром.

  • Транзистор должен переключался при значении нулевого тока.
  • Форма токовой синусоиды относительно силовых ключей должна быть аналогична к собственной частоте контура и составляет 100 кГц.
  • Амплитуда тока должна соответствовать средней мощности, например, как 40 А к 2000 Вт.
  • Определение максимального значения напряжения и максимальной частоты переключения транзисторов при условии, что плечи транзисторов должны работать в противофазе.

Для подбора драйвера IGBT транзистора руководствуются параметрами управления затвора, необходимого для коммутирования отпиранием и запиранием силового полупроводника. Для определения мощности управления нужно знать величину заряда затвора Q gate, частоту коммутации (fin) и реальный замеренный размах напряжения на выходе драйвера ΔVgate

 

Формула заряда затвора:

где время интегрирования должно не превышать время на управление выходных напряжений драйвера до их окончательных показателей, или при достижении выходного токового значения драйвера близкого к нулю.

Выбор максимальной величины тока управления  затвором определяется по упрощенной формуле:

Зависит от осцилляции величины тока на выходе. Если осцилляция тока управления затвором есть, то значение пикового тока должно быть очень большим, а его величина должна определяться исключительно с помощью измерения.

Не менее важны условия учета размаха выходного напряжения. Наихудший случай – это максимальное значение размаха на затворе, измеряется по реально существующей схеме.

Необходим учет максимальной рабочей температуры, руководствуются значением характерным для условия естественной конверсии без использования принудительного охлаждения.

Максимальная частота коммутации, она должна быть максимально-допустимая. На выбор оказывает влияние результирующая выходная мощность и рассеиваемая мощность резистора, используемого в цепи затвора.

Максимальный ток управления зависит от величины пикового тока, который может протекать через реальный контур управления затвором без появления осцилляций.

Проверка мощных IGBT-транзисторов

Проверка силового транзистора возникает при необходимости ревизии сгоревшего транзистора, например, при ремонте сгоревшего сварочного аппарата или с целью подбора пары для устройства, с тем, чтобы убедится, что это не «перемаркер». Проверку осуществляем с помощью мультиметра: прозваниваем вывода коллектора и эмиттера в обоих направлениях, так мы убедимся в отсутствии короткого замыкания. Входную емкость затвор-эмиттер заряжаем отрицательным напряжением. Осуществляется с помощью кратковременного и одновременного прикосновения щупом «СОМ» мультиметра затвора и щупом от гнезда «V/Ω/f» — эмиттера.

Рис. №4. Проверка транзистора IGBT.

Для проверки необходимо убедиться в рабочей функциональности транзистора. Заряжаем емкость на входе затвор-эмитер положительным напряжением. Это можно сделать, коротко прикоснувшись щупом мультиметра «V/Ω/f» — затвора, к щупу«СОМ» — эмиттера. Проверяем напряжение между коллектором и змиттером, оно должно быть не больше 1,5В, меньшая величина напряжения характерна для низковольтных транзисторов. Если напряжения мультиметра не хватает для открытия и проверки транзистора, входная емкость может заряжаться от источника постоянного напряжения со значением до 15 в.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru

Что такое IGBT-транзистор?

Параллельно с изучением свойств полупроводников происходило и совершенствование технологии изготовления приборов на их основе. Постепенно появлялись все новые элементы, с хорошими эксплуатационными характеристиками. Первый IGBT-транзистор появился в 1985 году и сочетал в себе уникальные свойства биполярной и полевой структур. Как оказалось, эти два известных на тот момент типа полупроводниковых приборов вполне могут “уживаться” вместе. Они-то и образовали структуру, которая стала инновационной и постепенно приобрела огромную популярность у разработчиков электронных схем. Сама аббревиатура IGBT (Insulated Gate Bipolar Transistors) говорит о создании гибридной схемы на основе биполярного и полевого транзисторов. При этом способность работать с большими токами в силовых цепях одной структуры сочеталась с высоким входным сопротивлением другой.

Современный IGBT-транзистор отличается от своего предшественника. Дело в том, что технология их производства постепенно совершенствовалась. С момента появления первого элемента с такой структурой его основные параметры изменились в лучшую сторону:

  • Коммутируемое напряжение выросло с 1000V до 4500V. Это позволило использовать силовые модули при работе в цепях повышенного напряжения. Дискретные элементы и модули стали более надежными в работе с индуктивностью в силовой цепи и более защищенными от импульсных помех.
  • Коммутируемый ток для дискретных элементов вырос до 600A в дискретном и до 1800A в модульном исполнении. Это позволило коммутировать токовые цепи большой мощности и использовать IGBT-транзистор для работы с двигателями, нагревателями, различными установками промышленного назначения и т.д.
  • Прямое падение напряжения в открытом состоянии упало до 1V. Это позволило уменьшить площадь теплоотводящих радиаторов и одновременно снизить риск выхода из строя от теплового пробоя.
  • Частота коммутации в современных приборах достигает 75 Гц, что позволяет использовать их в инновационных схемах управления электроприводом. В частности, они с успехом применяются в частотных преобразователях. Такие приборы оснащены шим-контроллером, который и работает в «связке» с модулем, основной элемент в котором – IGBT-транзистор. Частотные преобразователи постепенно замещают традиционные схемы управления электроприводом.
  • Быстродействие прибора также сильно выросло. Современные транзисторы IGBT обладают di/dt = 200мкс. Имеется в виду время, затраченное на включение/отключение. По сравнению с первыми образцами быстродействие увеличилось в пять раз. Увеличение этого параметра влияет на возможную коммутируемую частоту, что немаловажно при работе с устройствами, реализующими принцип шим-регулирования.

Также совершенствовались и электронные схемы, которые осуществляли управление IGBT-транзистором. Основные требования, которые предъявлялись к ним – это обеспечить безопасное и надежное переключение устройства. Они должны учитывать все слабые стороны транзистора, в частности, его «боязнь» перенапряжения и статического электричества.

fb.ru