Транзистор вместо терморезистора – Простые терморегуляторы в блоках питания — Источники питания — Другое — Каталог статей и схем

ЭЛЕКТРОННАЯ НАСЕДКА

ЭЛЕКТРОННАЯ НАСЕДКА

Данный терморегулятор не только прост, но надежен, так как в нем нет механически размыкающихся контактов. Роль ключевого элемента выполняет тиристор VS1 типа КУ202Н. В то же время его схема не содержит дефицитных деталей. Вместо терморезистора я использую германиевый транзистор, любой из серии МП39— МП42. Базовый вывод этого транзистора не использую, его можно удалить или надежно изолировать.

Выбор других деталей для данной схемы также не представляет особых проблем, схема не слишком критична к типу используемых элементов. Практически все необходимое можно найти в любом старом транзисторном или ламповом приемнике. Стабилитрон Д814А (VD1) можно заменить на Д814Б или любой другой с на­пряжением стабилизации от 7 до 9 В. Транзистор VT2 — типа КТ315 с любым буквенным индексом. Тиристор VS1 — типа КУ202 или КУ201 с буквенным индексом от «К» до «Н». Диоды выпрямительного моста \/Д2… \/Д5— типа КД202 с буквой «Ж», «И»… «Н». Последние можно заменить на Д226Б или «В», но при этом мощность нагревателя не должна преного моста \/Д2… \/Д5— типа КД202 с буквой «Ж», «И»… «Н». Последние можно заменить на Д226Б или «В», но при этом мощность нагревателя не должна превышать 60 Вт. Если использовать по два диода Д226 в каждом плече моста, то мощность подключаемого к регулятору нагревателя можно увеличить до 130 Вт. С диодами типа КД202 мощность может быть до 600 Вт.

Величины сопротивлений рези­сторов также могут несколько от­личаться от приведенных на схеме рис. 1. R1 — регулировка температуры — переменный ре­зистор любого типа от 33 до 47 кОм. R2 — типа МЛТ-0,5 или 0,25 от 1,5 до 1,8 МОм. R3 и R4 — того же типа — 5,6… 6,8 кОм и 47… 51 кОм соответственно. R5 — МЛТ-2 от 18 до 20 кОм.

Детали регулятора температуры монтируют на печатной плате (рис. 2) из фольгированного гетинакса или текстолита толщиной 1,5… 2,0 мм. Проводники вырезают резаком по линейке. Расположение деталей на лицевой стороне платы показано на рис. 3. Размеры платы и рисунок проводников позволяют устанавливать на ней диоды как типа КД202, так и типа Д226.

Датчик температуры VT1 необ­ходимо обязательно поместить в изолирующую тонкостенную пластмассовую трубку подходящего диаметра и соединить с платой парой свитых между собой проводников. Ручка на оси пере­менного резистора R1 также обя­зательно должна быть пластмас­совой.

Несмотря на простоту, терморе­гулятор очень надежен в работе. За три года он меня ни разу не подводил.

www.umeluieruki.ru

BIGBEN Mobile Blog: Простые терморегуляторы

Многим радиолюбителям известен так называемый «триггерный эффект» на пороге срабатывания термо-, фотореле, автоматического зарядного устройства и т.п. Устройство может сработать нормально десятки раз, но иногда бывает такой неприятный момент, когда исполнительное реле включится, сразу же выключится, опять включится и т.д. Такое явление может проявляться довольно длительное время — «подгорают» контакты реле, да и ресурс времени работы реле не безграничен. Если в схеме применены тиристоры, то при частом включении-выключении они могут греться и выходить из строя, а также давать помехи в питающую сеть. На рис.1 показана схема терморегулятора на реле, в котором такое вредное явление, как «триггерный эффект», отсутствует.

Предположим, что данный терморегулятор используют для регулировки температуры воздуха в инкубаторе. Если температура в инкубаторе ниже +38°С (выставляют переменным резистором R4), сопротивление терморезистора R3 сравнительно большое и компаратор на DA1 находится в режиме положительного насыщения, транзисторы VT1 и VT2 открыты, реле К1 притянуто, и происходит нагревание воздуха в инкубаторе. При достижении в инкубаторе температуры +38°С сопротивление терморезистора R3 становится меньше и компаратор перебрасывается в состояние отрицательного насыщения (на выходе потенциал общего провода), закрываются транзисторы VT1 и VT2, реле К1 отпускает. В связи с тем, что последовательно с резистором R1 включен резистор R2, который шунтируется нормально замкнутыми контактами реле К1, реле включается при одной температуре, а выключается при другой, т.е. поддерживается температура в инкубаторе в пределах, например, +37,5…38°С. Необходимая разность температур обеспечивается подбором резистора R2. Таким образом, такое вредное явление, как «триггерный эффект», в данной схеме терморегулятора отсутствует. Напряжение срабатывания реле К1 должно быть не ниже 10 В, контакты реле должны выдерживать коммутируемый переменный ток и быть рассчитаны на напряжение не менее 250 В. Печатная плата терморегулятора показана на рис.2.

На рис.3 показана схема терморегулятора с тиристором в силовой части, которая также свободна от явления «триггерного эффекта».

Предположим, что данный терморегулятор также используют для инкубатора, необходимая температура воздуха в нем должна быть в пределах +38…39°С (данный диапазон температур выставляют переменным резистором R4). На ОУ микросхемы DA1 выполнен двухпороговый компаратор. Если температура в инкубаторе ниже +38°С, сопротивление терморезистора R3 сравнительно большое, и оба компаратора находятся в состоянии положительного насыщения (уровень лог.»1″ на их выходах). На логических элементах DD1.2, DD1.3 построен RS-триггер. Если температура воздуха в инкубаторе ниже +38°С, на входе S RS-триггера присутствует лог.»0″ (после инвертора DD1.1), на входе R — лог.»1″, триггер находится в «единичном» состоянии (лог.»0″ на его инверсном выходе 4 DD1.3). При этом транзистор VT1 закрыт, на управляющий электрод тиристора VS1 подается положительный потенциал относительно его катода, тиристор открыт, нагревательный элемент Rн включен. При достижении температуры воздуха в инкубаторе +38°С сопротивление терморезистора R3 уменьшается, компаратор на DA1.1 перебрасывается из состояния положительного насыщения в состояние отрицательного насыщения, на его выходе устанавливается лог.»0″, на входе S триггера — лог.»1″, но триггер остается в «единичном» состоянии, нагревательный элемент RH включен. Когда температура воздуха в инкубаторе достигнет значения +39°С, лог.»0″ появится и на выходе компаратора DA1.2, который по входу R RS-триггера установит его в «нулевое» состояние. При этом на выводе 4 DD1.3 появится лог.»1″, которая откроет транзистор VT1, на управляющем электроде тиристора VS1 установится низкий потенциал относительно его катода, тиристор закроется, и нагреватель отключится от питающей сети. Когда температура воздуха в инкубаторе станет ниже +39°С, но выше +38°С, в состояние положительного насыщения установится компаратор DA1.2, но лог.»1″ на входе R триггера не изменит его нулевого состояния, и нагреватель по-прежнему будет отключен. И только при понижении температуры воздуха в инкубаторе ниже +38°С, в состояние положительного насыщения установится компаратор DА 1.1, на вход S триггера поступит лог.»0″, который включит в работу нагреватель Rн. Таким образом, температура в инкубаторе поддерживается в пределах +38…+39°С (необходимую разность температур достигают подбором сопротивления резистора R2), и явление «триггерного эффекта» в данной схеме терморегулятора отсутствует. Печатная плата терморегулятора показана на рис.4.

При налаживании и эксплуатации устройства необходимо соблюдать осторожность и не касаться деталей, так как в схеме присутствует потенциал сети. Целесообразно для более точной и плавной регулировки температуры подобрать переменный резистор R4 (также и в схеме рис.1). Диоды VD1-VD4 можно исключить. В этом случае на нагревателе Rн будет только одна полуволна сетевого напряжения, т.е. при мощности 500 Вт на нагревателе будет выделяться 250 Вт, и значительно возрастет надежность и долговечность самого нагревателя. Напряжение на вторичной обмотке трансформатора Т1 должно быть в пределах 13…16 В.

Регулятор температуры паяльника.

Этот очень простой регулятор позволяет поддерживать па­яльник в горячем состоянии, но с недогревом. С помощью регулирующего элемента мощность паяльника, рассчитанно­го на 50 Вт, устанавливается в пределах от 25 до 48 Вт. Прин­ципиальная схема регулятора приведена на рис.


С помощью диода Д1 на паяльник подаются положитель­ные полупериоды сетевого напряжения 220 В. Отрицатель­ные полупериоды подаются через тринистор Д2, который управляется переменным резистором R2. Резистор R1 слу­жит для ограничения тока управляющего электрода и вмес­те с конденсатором С1 создает необходимый для регулиров­ки сдвиг фазы.

Простой терморегулятор
Этот терморегулятор предназначен для поддержания темпе­ратуры в замкнутом объеме, например в термостате, с помо­щью включения или выключения вентилятора. Пределы регу­лировки составляют от 28 до 40 °С, точность ±1 °С. Питание осуществляется от батарей или внешнего блока питания на­пряжением 12 В. Принципиальная схема регулятора показана на рис.

На транзисторах Т1 и Т2 собран триггер Шмитта, работа которого управляется делителем напряжения, состоящим из резистора R2 и термистора R8. Питание делителя произво­дится стабилизированным напряжением с помощью стаби­литрона Д1 и резистора R1.
При пониженной температуре в контролируемом объеме сопротивление термистора и напряжение на базе транзисто­ра Т1 велико, он открыт, а транзистор Т2 заперт. Поэтому электромагнитное реле Р1 обесточено и его контакты разом­кнуты. При увеличении температуры, сверх установленной переменным резистором R4, напряжение на базе Т1 умень­шается и триггер опрокидывается. Теперь отпирается тран­зистор Т2 и срабатывает реле, замыкающимися контактами которого включается вентилятор. Диод ДЗ предохраняет транзистор Т2 вследствие пробоя от воздействия ЭДС само­индукции обмотки реле.

Вместо указанных на схеме элементов можно использо­вать транзисторы КТ315Б, стабилитрон КС147А, диоды Д101, термистор СТ1-17. В качестве реле можно установить РЭС10, паспорт РС4.524.312.

Терморегулятор по схеме триггера Шмитта.
Этот автоматический регулятор предназначен для поддержа­ния постоянной температуры в диапазоне от 10 до 50 °С с максимальной ошибкой не более ±1 °С. Максимальная мощ­ность нагревателя составляет 500 Вт. Принципиальная схе­ма регулятора приведена на рис.


На транзисторах Т1 и Т2 собран триггер Шмитта. Пере­менные резисторы R2 и R5 служат для установки порога его опрокидывания. В качестве термочувствительного элемента использован терморезистор R1 типа КМТ-10. Назначением резистора R3 является снижение сопротивления между ба­зой Т1 и шиной питания до 30 кОм. В цепь коллектора тран­зистора Т2 включена обмотка реле Р1. Диод Д2 защищает ранзистор от пробоя возникающей ЭДС самоиндукции об­мотки реле.
Триггер питается стабилизированным напряжением бла­годаря использованию стабилитрона ДЗ. Схема имеет бес­трансформаторное питание с гасящим конденсатором СЗ и выпрямительным мостом на диодах Д4-Д7. Конденсаторы С1 и С4 предназначены для устойчивого срабатывания реле и снижения нагрузки на его контакты Р1/1. Лампочка Л1 сигнализирует о подаче питания на устройство.
Вместо транзисторов МП42Б можно использовать КТ361Б, а вместо диодов Д226Б — КД105Б. В регуляторе ис­пользовано открытое электромагнитное реле типа МРЦ-1, паспорт Ю.171.80.33.

Терморегулятор на тиристоре.
Этот терморегулятор рассчитан на подключение нагрева­тельного прибора мощностью до 500 Вт. Принципиальная схема терморегулятора приведена на рис.

Чувствительным элементом в этой схеме служит терморе­зистор R5 типа ММТ-4, который вместе с резисторами R4 и R11 включен на входе триггера Шмитта на транзисторах Т1 и Т2. Пока температура равна или больше установленной переменным резистором R11, транзистор Т1 заперт, Т2 от­крыт, ТЗ заперт. Поэтому потенциал катода тиристора Д10 такой же, как потенциал управляющего электрода. Тиристор заперт, и напряжение сети не проходит через диодный мост Д6-Д9. К нагревателю питание не поступает.
Если температура меньше заданной, сопротивление тер­морезистора увеличивается, напряжение на базе транзисто­ра Т1 тоже увеличивается и триггер опрокидывается. Тогда транзистор ТЗ отпирается, и падением напряжения на рези­сторе R9 отпирается тиристор. В результате диодный мост становится проводящим, и к нагревателю поступает напря­жение сети.
Трансформатор Tpl собирается на сердечнике Ш 12×25. Обмотка I содержит 8000 витков провода ПЭВ-1 диаметром 0,1 мм, а обмотка II — 170 витков провода ПЭВ-1 диаметром 0,4 мм. В качестве ТЗ можно использовать транзистор КТ315А. В связи с тем, что тиристоры КУ201Л допускают прямое на­пряжение в запертом состоянии не более 300 В, а амплитуд­ное значение сетевого напряжения составляет 311 В, во из­бежание пробоя тиристора рекомендуется вместо КУ201Л использовать тиристор КУ202М или КУ202Н, допускающие указанное напряжение до 400 В.

bigbenmobileblog.blogspot.com

Терморегуляторы — схемы и описание — Копилка знаний


Регулятор температуры паяльника.
Этот очень простой регулятор позволяет поддерживать па­яльник в горячем состоянии, но с недогревом. С помощью регулирующего элемента мощность паяльника, рассчитанно­го на 50 Вт, устанавливается в пределах от 25 до 48 Вт. Прин­ципиальная схема регулятора приведена на рис.


С помощью диода Д1 на паяльник подаются положитель­ные полупериоды сетевого напряжения 220 В. Отрицатель­ные полупериоды подаются через тринистор Д2, который управляется переменным резистором R2. Резистор R1 слу­жит для ограничения тока управляющего электрода и вмес­те с конденсатором С1 создает необходимый для регулиров­ки сдвиг фазы.

Простой терморегулятор
Этот терморегулятор предназначен для поддержания темпе­ратуры в замкнутом объеме, например в термостате, с помо­щью включения или выключения вентилятора. Пределы регу­лировки составляют от 28 до 40 °С, точность ±1 °С. Питание осуществляется от батарей или внешнего блока питания на­пряжением 12 В. Принципиальная схема регулятора показана на рис.

На транзисторах Т1 и Т2 собран триггер Шмитта, работа которого управляется делителем напряжения, состоящим из резистора R2 и термистора R8. Питание делителя произво­дится стабилизированным напряжением с помощью стаби­литрона Д1 и резистора R1.
При пониженной температуре в контролируемом объеме сопротивление термистора и напряжение на базе транзисто­ра Т1 велико, он открыт, а транзистор Т2 заперт. Поэтому электромагнитное реле Р1 обесточено и его контакты разом­кнуты. При увеличении температуры, сверх установленной переменным резистором R4, напряжение на базе Т1 умень­шается и триггер опрокидывается. Теперь отпирается тран­зистор Т2 и срабатывает реле, замыкающимися контактами которого включается вентилятор. Диод ДЗ предохраняет транзистор Т2 вследствие пробоя от воздействия ЭДС само­индукции обмотки реле.
Вместо указанных на схеме элементов можно использо­вать транзисторы КТ315Б, стабилитрон КС147А, диоды Д101, термистор СТ1-17. В качестве реле можно установить РЭС10, паспорт РС4.524.312.

Терморегулятор по схеме триггера Шмитта.
Этот автоматический регулятор предназначен для поддержа­ния постоянной температуры в диапазоне от 10 до 50 °С с максимальной ошибкой не более ±1 °С. Максимальная мощ­ность нагревателя составляет 500 Вт. Принципиальная схе­ма регулятора приведена на рис.


На транзисторах Т1 и Т2 собран триггер Шмитта. Пере­менные резисторы R2 и R5 служат для установки порога его опрокидывания. В качестве термочувствительного элемента использован терморезистор R1 типа КМТ-10. Назначением резистора R3 является снижение сопротивления между ба­зой Т1 и шиной питания до 30 кОм. В цепь коллектора тран­зистора Т2 включена обмотка реле Р1. Диод Д2 защищает ранзистор от пробоя возникающей ЭДС самоиндукции об­мотки реле.
Триггер питается стабилизированным напряжением бла­годаря использованию стабилитрона ДЗ. Схема имеет бес­трансформаторное питание с гасящим конденсатором СЗ и выпрямительным мостом на диодах Д4-Д7. Конденсаторы С1 и С4 предназначены для устойчивого срабатывания реле и снижения нагрузки на его контакты Р1/1. Лампочка Л1 сигнализирует о подаче питания на устройство.
Вместо транзисторов МП42Б можно использовать КТ361Б, а вместо диодов Д226Б — КД105Б. В регуляторе ис­пользовано открытое электромагнитное реле типа МРЦ-1, паспорт Ю.171.80.33.

Терморегулятор на тиристоре.
Этот терморегулятор рассчитан на подключение нагрева­тельного прибора мощностью до 500 Вт. Принципиальная схема терморегулятора приведена на рис.

Чувствительным элементом в этой схеме служит терморе­зистор R5 типа ММТ-4, который вместе с резисторами R4 и R11 включен на входе триггера Шмитта на транзисторах Т1 и Т2. Пока температура равна или больше установленной переменным резистором R11, транзистор Т1 заперт, Т2 от­крыт, ТЗ заперт. Поэтому потенциал катода тиристора Д10 такой же, как потенциал управляющего электрода. Тиристор заперт, и напряжение сети не проходит через диодный мост Д6-Д9. К нагревателю питание не поступает.
Если температура меньше заданной, сопротивление тер­морезистора увеличивается, напряжение на базе транзисто­ра Т1 тоже увеличивается и триггер опрокидывается. Тогда транзистор ТЗ отпирается, и падением напряжения на рези­сторе R9 отпирается тиристор. В результате диодный мост становится проводящим, и к нагревателю поступает напря­жение сети.
Трансформатор Tpl собирается на сердечнике Ш 12×25. Обмотка I содержит 8000 витков провода ПЭВ-1 диаметром 0,1 мм, а обмотка II — 170 витков провода ПЭВ-1 диаметром 0,4 мм. В качестве ТЗ можно использовать транзистор КТ315А. В связи с тем, что тиристоры КУ201Л допускают прямое на­пряжение в запертом состоянии не более 300 В, а амплитуд­ное значение сетевого напряжения составляет 311 В, во из­бежание пробоя тиристора рекомендуется вместо КУ201Л использовать тиристор КУ202М или КУ202Н, допускающие указанное напряжение до 400 В.
 



По этой теме читайте на сайте :

kopilca.ru

Термодатчики на транзисторах в схемах на МК

Физическая природа полупроводниковых материалов такова, что их параметры достаточно сильно зависят от температуры. В обычных усилительных схемах с этим явлением борются, а в измерителях температуры, наоборот, поощряют Например, у кремниевых транзисторов при постоянном токе коллектора с повышением температуры напряжение «база — эмиттер» U^^^ уменьшается с теоретическим коэффициентом 2.1 мВ/°С. Фактическое же изменение пропорционально отношению 1000|мВ|/Гх1 К], где Гх — температура среды по шкале Кельвина.

Пример расчёта. Пусть напряжение между базой и эмиттером стандартного кремниевого транзистора при температуре 7;)= 20°С составляет   ^^^

С повышением температуры его корпуса до Г, = 35°С это напряжение уменьшается на 49м В: i

Реальное напряжение может несколько отличаться от расчётного, что зависит от положения рабочей точки транзистора и его типа. В любом случае рекомендуется снижать и стабилизировать ток, протекающий через /?—/7-переход, чтобы устранить эффект саморазогрева кристалла.

 

Рис. 3.67. Схемы подключения транзисторных термодатчиков к МК:

а)  измерение температуры в диапазоне —30…+150°С. Термодатчиком выступает транзистор VTI, у которого напряжение (/[^э «дрейфует» с коэффициентом около 2 мВ/°С. Резисторами R4 и 7 выставляется диапазон температур и калибровочное напряжение +3 В на входе МК при комнатной температуре +25°С. Транзистор VTI имеет металлический корпус, торец которого можно запрессовать в термостойкую пластиковую трубку и использовать всю конструкцию как выносной щуп или зонд;

б)  термодатчик на однопереходном транзисторе VTI обеспечивает линейность измерения температуры в диапазоне 0…+ 100°С;

в) транзистор VTI специально используется малогабаритный поверхностно монтируемый (SMD). Это необходимо для уменьшения тепловой инерционности датчика. К примеру, SMD- транзистор входит в стабильный тепловой режим через одну минуту после скачка температуры на 10°С (обычному «большому» транзистору требуется в несколько раз больше времени). Резистор /^/балансирует дифференциальную схему, состоящую из транзисторов VTI, VT2\

На Рис. 3.67, а…г показаны схемы подключения транзисторных термодатчиков к МК.

г) транзистор VT1 имеет в своём корпусе отверстие, через которое может закрепляться винтом на поверхности измеряемого объекта. Коллектор транзистора электрически соединяется со своим корпусом, что надо учитывать при монтаже. Температурный коэффициент преобразования прямо пропорционален отношению резисторов R3/R2 (в данной схеме около 20 мВ/°С).

nauchebe.net

Майер Р.В. Практическая электроника: от транзистора до …

НАЗАД

3. ТЕРМОРЕЛЕ И ФОТОРЕЛЕ

1. Термореле. Вы наверное задумывались, как работает холодильник? Почему температура внутри холодильной камеры поддерживается внутри некоторого заданного диапазона независимо от температуры окружающей среды? Для решения этой проблемы используется термореле, которое в простейшем случае состоит из термодатчика, транзисторного ключа и электромагнитного реле. Когда температура внутри холодильной камеры становится выше заданного значения t1, реле замыкает цепь, включается двигатель, камера начинает охлаждаться. При понижении температуры ниже значения t2 реле размыкает цепь, охлаждение прекращается.

Рис. 1. Термореле на одном транзисторе.

В наших опытах в качестве термодатчика будем использовать терморезистор ММТ—12. Чтобы понять, как он работает, соберем цепь из последовательно соединенных переменного резистора и терморезистора, параллельно резистору подключим вольтметр (рис. 1.1). Сопротивление переменного резистора должно быть примерно равно сопротивлению терморезистора. При нагревании терморезистора его сопротивление падает, показания вольтметра увеличиваются.

Схема термореле на одном транзисторе приведена на рис. 1.2. Терморезистор и переменный резистор образуют делитель напряжения, напряжение с которого подается на базу транзистора. Коллектор транзистора соединен с реле. Следует правильно подобрать сопротивление переменного резистора R2 так, чтобы нагревание терморезистора вызывало открывание транзистора. В результате реле срабатывает и замыкает (размыкает) цепь управления, и включает, например, звонок или двигатель. Внешний вид устройства приведен на рис. 2.

Рис. 2. Внешний вид термореле.

2. Терморегулятор. Соберем термореле, к нормально замкнутым контактам подсоединим лампу накаливания на 100 Вт и подключим ее в сеть 220 В. Создадим замкнутую систему управления, для этого прямо под лампой расположим терморезистор. При охлаждении терморезистора лампа включится и начнет его нагревать. После того, как температура терморезистора достигнет определенного значения сработает реле и разорвет цепь, лампа выключится. Терморезистор начнет охлаждаться, через некоторое время лампа снова включится и т.д. В результате возникнут автоколебания, лампа будет через 30 — 60 с включаться и выключаться. Если вместо лампы использовать нагреватель (плитка, паяльник), то получится простейший терморегулятор.

3. Фотореле. Для того, чтобы получить из рассмотренной выше схемы фотореле достаточно заменить терморезистор на фоторезистор ФСК — 1 и подобрать сопротивление резистора R2 так, чтобы его освещение приводило к срабатыванию реле. Фотореле так же позволяет создать замкнутую схему управления: для этого фоторезистор следует расположить напротив лампы накаливания. При включении лампы фоторезистор освещается, его сопротивление падает, транзистор открывается, реле размыкает цепь и выключает лампу. Сопротивление фоторезистора растет, транзистор закрывается, реле выключается, лампа загорается и т.д. Возникают автоколебания с периодом 1 — 5 с, который зависит от сопротивления переменного резистора R2.

4. Фотореле с гальванической развязкой. Электронные ключи предпочтительнее электромагнитного реле: они надежны, малоинерционны и миниатюрны. Рассмотрим схему фотореле на тиристоре (рис. 3), в которой предусмотрена гальваническая развязка между электронной и силовой частями схемы.

Для гальванической развязки между управляющей цепью на транзисторе VT1 и силовой цепью на тиристоре VD2 используется тиристорный оптрон VD1. Положение подвижного контакта переменного резистора R2 подбирают так, чтобы при низкой освещенности фоторезистора R1 транзистор VT1 был бы все еще закрыт. В этом случае через светодиод оптрона протекает ток, светодиод освещает динистор, тот открыт. На управляющий электрод тиристора VD2 подается положительный потенциал, он тоже открыт, лампочка светится.

Рис. 3. Фотореле с гальванической развязкой.

При освещении фоторезистора R1 его сопротивление падает, потенциал базы растет, что приводит к открыванию транзистора VT1 и уменьшению потенциала его коллектора. Светодиод оптрона перестает освещать тиристор оптрона, это приводит к закрыванию тиристора VD2. Лампа перестает светиться. Резистор R5 сильно нагревается, он должен иметь мощность не менее 1 Вт и сопротивление 5,6 ком. В качестве оптрона можно использовать АОУ103Б или PC817. Оптрон PC817 имеет следующие предельно допустимые параметры: максимальные ток через светодиод 50 мА, напряжение коллектор-эмиттер фототранзистора 35 В, ток коллектор-эмиттер 50 мА.

Чтобы получить замкнутую систему управления, необходимо фоторезистор становить напротив лампы. Тогда при включении лампы будет происходить освещение фоторезистора, что приведет к выключению лампы. Освещенность фоторезистора уменьшится, лампа снова включится и т.д. Возникнут автоколебания, частота которых зависит от напряжений питания электронной и силовой части цепи, расстояния между лампой и фоторезистором, напряжения смещения на базе транзистора, определяемого положением подвижного контакта резистора R2. Чтобы искусственно увеличить инерционность фотореле включают конденсатор C1 большой емкости: в этом случае при освещении фоторезистора потенциал базы транзистора растет существенно медленнее. Маркировка оптронов представлена на рис. 4.

Рис. 4. Маркировка оптронов.


ВВЕРХ

rmajer.narod.ru

Простой универсальный терморегулятор — Мои статьи — Каталог статей

Каталог

Простой универсальный терморегулятор


        Терморегулятор, схема которого приведена ниже, является универсальным в том смысле, что он может работать в широком диапазоне температур, при напряжении питания от 12 до 30 В, в прямом и инверсном включении, а если вместо термодатчика включить выпрямленное напряжение снятое со вторичной обмотки трансформатора тока, то получим защиту от перегрузки. Заменив транзистор VT2 на полевой, а датчик на конденсатор — получим реле времени, и т.д.
         Схема работает следующим образом. Резисторы R1, R2 и транзистор VT1 образуют температурно-зависимый делитель напряжения, которое через усилитель постоянного тока на транзисторе VT2 подается на триггер Шмита (транзисторы VT3,VT4). Конденсатор С1 дает временную задержку срабатывания триггера, необходимую для исключения ложных срабатываний вследствие прохождения коротких импульсов помех. На транзисторах VT5, VT6 собран усилитель тока, непосредственно включающий реле. Микросхема КР142ЕН8А позволяет легко изменять входное напряжение от 12 до 30 В, что дает дополнительное преимущество при выборе источника питания и типа реле.
         В исходном положении, когда температура датчика ниже заданной температуры отключения источника нагрева, транзисторы VT2,VT3 и VT5, VT6 открыты, реле Р1 включено, а VT4 закрыт, как только температура поднимется до необходимой значения, сопротивление датчика уменьшится, и транзистор VT2 закроется, в результате чего изменится состояние триггера, и реле Р1 отключит нагрузку. Если необходимо наоборот не выключать нагрузку, а включать, достаточно будет заменить p-n-p транзистор VT2 на транзистор структуры n-p-n (например, КТ 315) и изменить полярность питания первого каскада, как показано на схеме.
         В качестве термодатчика можно использовать любые германиевые транзисторы и диоды, выбрав наиболее нетермостабильные экземпляры, или терморезисторы. Рекомендую использовать старые импортные транзисторы АС125.



Монтажная плата (сх.на отключение)
Монтажная плата (сх.на включение)

Скачать (Монтажные платы в формате MDI) 

Н. Тукмачев

Монтажные платы Ю. Повышев

Каталог

При использования данного материала на других ресурсах, активная  ссылка на источник обязательна.

touck.ru