Устройство конденсатора электролитического – . .

Содержание

Устройство электролитического конденсатора

В каждом современном бытовом приборе, как правило, есть электролитические конденсаторы.
В отличие от других типов конденсаторов, электролитические конденсаторы являются обычно полярными, то есть включаются в цепь исключительно определенным образом, с соблюдением полярности. Основным же преимуществом электролитических конденсаторов является их компактность при довольно существенной емкости в отличие от иных типов конденсаторов. Размер тем больше, чем больше емкость и чем выше допустимое рабочее напряжение.

Электролитические конденсаторы выпускаются традиционно емкостью до 1 фарады и на допустимое рабочее напряжение до 400 вольт. Однако с развитием технологий эти значения все время увеличиваются.
В качестве диэлектрика в таких конденсаторах используется тонкий слой оксидной пленки, наносимый на протравленный алюминиевый положительный (анод) электрод методом анодного оксидирования. За счет весьма малой толщины оксидной пленки на аноде, (до 1 микрона) электроемкость такого конденсатора получается весьма значительной. Второй электрод (катод) также алюминиевый, он также подвергается травлению. Это делается для придания поверхности шероховатости для улучшения контакта. Электроды разделены обычно слоем пропитанной электролитом пористой бумаги, которая выступает в качестве вспомогательного электрода для катода, а также предотвращает контакт между анодной и катодной пластинами фольги. Пластины с выводами, вместе с пропитанной электролитом бумагой скручиваются в плотный цилиндр, который запечатывается в цилиндрический алюминиевый корпус.

Обычно электролитические конденсаторы рассчитаны на работу в диапазоне температур от минус 40 до плюс 150 градусов Цельсия, а в качестве вспомогательных мер для охлаждения, может быть предусмотрена возможность крепления корпуса на внешний радиатор.

Выводы электродов таких конденсаторов различаются в зависимости от типа корпуса и предполагаемого способа монтажа: под винт, проволочные, защелкиваемые и другие.

Лучшее сочетание вакуумных и          полупроводниковых характеристик — однотактный гибридный усилитель звука.

          Мы не создаём иллюзий,
          Мы делаем звук живым!

grimmi.ru

Конденсатор — электронное устройство, принцип работы, функциональное назначение, разновидности.

Конденсатор (электро-, Capacitor — Eng.) — элемент электрической цепи, который обеспечивает кратковременное накопление энергии и быструю отдачу накопленного. Применяются в цепях фильтров

питания, цепях межкаскадовых связей, а также для фильтрации помех.

Основной характеристикой является ёмкость. Измеряется в Фарадах (Ф, F). Фарад характеризует заряды, создаваемые электрическими полями.
Емкость конденсатора пропорционально увеличивается с площадью обкладок и уменьшается с расстоянием между ними. Еще одной важным параметром конденсатора является рабочее напряжение. Напряжение это не с потолка берется, а характеризуется максимальным напряжением при превышении которого наступает пробой диэлектрика и выход конденсатора из строя. Качественные конденсаторы от дорожащих своим именем производителей, имеют солидный запас прочности и могут работать и на немного завышенных напряжениях без каких либо последствий. Потому именно их и стоит приобретать для лучшей стабильности и долговечности.

Существуют поляризированные и неполяризированные конденсаторы. При неправильном подключении поляризированного, он может выйти из строя из-за сильного нагрева, с последующим вскрытием или даже мини-взрывом.

Существует множество разновидностей конденсаторов.
В относительно сложных электронных схемах обычно применяются электролитические, полимерные и керамические. К тому же если конденсаторы используются с цифровым оборудованием, желательно чтобы они имели низкое эквивалентное последовательное сопротивление (Low — ESR). Чтобы это получить, производители используют более качественные компоненты конденсатора. Если требуется Low-ESR

конденсатор а вы поставили обычный, он будет довольно сильно нагреваться и быстро выйдет из строя. Может быть за пару дней или даже часов.

Электролитические — самые недолговечные, по причине постоянного испарения электролита, особенно при повышенной температуре или плохой герметичности конденсатора. Но тем не менее, они и самые распространённые по причине своей дешевизны.


В основном, имеют срок службы не более 50 000 часов, обычно же 10 — 20 000. При испарении или недостаточном количестве электролита вздуваются и даже разрываются с характерным хлопком. Вздутые конденсаторы — показатель того что необходимо его заменить во избежании проблем с питанием и общей стабильностью.

Твёрдотельные полимерные

Относительно долговечны, очень редко вздуваются и намного компактней электролитических. Большинство производителей компьютерной техники, полностью перешли на полимерные конденсаторы, даже в бюджетном секторе. Нюанс в том, что они дороже электролитических. Потому этот переход был постепенным и произошёл благодаря массовому производству и удешевлению полимерных конденсаторов.

Принцип работы схож с электролитическими конденсаторами, только вместо электролита используется вязкий полимерный материал. Он практически не испаряется и имеет лучшие показатели, чем обычный электролит.

Керамические

Керамические конденсаторы умеют накапливать энергию с малыми потерями по току, лучше фильтруют помехи и не вздуваются в тяжёлых эксплуатационных условиях. А ещё они не вскрываются и не взрываются (есть исключения в некоторых видах полимерных), забрызгивая электролитом остальные компоненты схемы.
Имеют гораздо меньший размер в сравнении с электролитическими, меньше нагреваются. Срок службы 100 000 часов и более.

Не менее распространены танталовые конденсаторы, но применяются преимущественно в точной электронике с нанесением на саму плату. Танталовые конденсаторы, относятся к подвиду электролитических, но с натяжкой.

При малых размерах, имеют выдающиеся характеристики, а также

долгий срок службы. Менее чувствительны к нефильтрованной высокочастотной составляющей, выносливы при работе с повышенной температурой, имеют низкий ESR.

www.xtechx.ru

Принцип работы конденсатора и его технические характеристики

С тех пор, как фон Клейст – не военачальник, священник – решил ухватить рукой банку (бутылку), заполненную водой, с опущенным туда электродом, прошло немало времени. Конструкций конденсаторов сегодня великое множество. Бессильны обещать рассмотреть 100%, дадим понятие о принципах работы конденсатора, технических характеристиках. Надеемся, обзор выйдет удачным.

Осторожно, работает конденсатор: история лейденской банки

Проще начать статическим зарядом. Отмечено учеными, проводник способен накапливать поверхностью электричество. Плотность распределения одинакова по площади. Ключевое отличие металлов от диэлектриков, накапливающих заряд. Обживая кусок железа, носители тока стремятся занять крайнее положение, отталкиваясь взаимно. В результате скапливаются равномерно по поверхности.

На принципе созданы генераторы, способные копить заряд потенциалом единицы миллионов вольт. При прикосновении к токонесущей части человек попросту испепелится. Аналогично действуют конденсаторы. Сформированы проводниками, площадь которых сильно увеличена. Достигается различными методами. В электролитических конденсаторах алюминиевая фольга скатывается рулоном. Небольшой цилиндр содержит метры металлической ленты.

Разновидности конденсаторов

Поясним работу. Когда на металлической (проводящей поверхности) появляется заряд, начинается поверхностное распределение. В 1745 году священник-юрист Эвальд Юрген фон Клейст обнаружил: удерживая в руках банку с водой, запасает внутри электричество. Ладонь служит проводящей обкладкой, объем жидкости (по внешней поверхности) — другой. Стекло выступает диэлектрическим барьером. При опускании в воду электрода носители стремятся занять крайнее положение, бороздя поверхность. Через стекло поле действует на ладонь, ответно начинаются схожие процессы (заряд притягивает носители противоположного знака).

Позже емкость догадались обернуть фольгой, получилась лейденская банка – первый дееспособный конденсатор на Земле, изобретенный человеком. Произошло, когда Питер ван Мушенбрук впечатлился силой полученного в процессе опыта ударом электричества. Стало понятно: опыты небезопасны, руку следует заменить. Ученые писал: второй раз избегает испытывать судьбу ради королевства Франции. Датчанин Даниэль Гралат стал первым догадавшимся соединить лейденские банки параллельно, обеспечивая более высокую емкость системе. Напоминает современный свинцовый аккумулятор задумкой.

Смешно, подобные устройства использовались вплоть до 1900 года, входящая в обиход радиосвязь вынудила искать новые пути решения проблемы, использовались сравнительно высокие частоты электрических сигналов. В результате появились первые бумажные конденсаторы, маслянистое полотно отделяло друг от друга две обкладки свернутой цилиндром фольги. Постепенно с развитием производства в качестве изоляторов стали применяться иные материалы:

  1. Керамика;
  2. Слюда;
  3. Бумага.

Истинный прорыв в конструировании конденсаторов произошел, когда люди догадались диэлектрик заменить слоем оксида окисленной поверхности металла. Сказанное касается электролитических конденсаторов. Один цилиндр фольги покрыт оксидом. Чаще сегодня используется травление (намеренное окисление материала действием агрессивных сред), если требования технических характеристик велики, применяется анодирование. Позволяя получить гладкую поверхность, плотно прилегающую к электроду противоположного знака.

Обкладками выступают оксидированная фольга и бумага, пропитанная электролитом. Разделены тончайшим слоем оксида, позволяя получить потрясающие емкости, единицы-десятки микрофарад сравнительно малого объема. Технические характеристики конденсаторов просто потрясающие. Второй рулон алюминиевой фольги послужит простым проводником электричества, считается одним контактом. Оксид характеризуется удивительным свойством – проводит ток в одном направлении. При подключении электролитического конденсатора неправильной стороной происходит взрыв (разрушение диэлектрика, закипание электролита, образование пара, разрыв корпуса).

Отказываясь служить диэлектриком, разделяющий слой становится проводником. Из-за резкого повышения температуры области начинается лавинообразная реакция меж металлом и электролитом, конденсатор взбухает. Видели многие радиолюбители, избегаем рассказывать, процессе мало веселого предоставит внимательному зрителю.

Зачем конденсатору диэлектрик

Было замечено: если поместить меж пластинами конденсатора изолирующий материал, емкость возрастает. Долго ломали головы ученые мужи, было раскрыто понятие диэлектрической проницаемости. Оказывается, согласно теореме Гаусса можно связать с емкостью конденсатора напряженность поля обкладок. Получается, изолятор обеспечивает накопление зарядов металлами, собирая поверхностью носители противоположного знака. Полагаем, читатели догадались: те создают поле, направленное навстречу исходному, вызывая ослабление, повышающее вместимость конструкции.

Диэлектрик конденсатора

Таблицы показывают: бумага, керамика выглядят не лучшими материалами. Значения серной кислоты достигают 150 единиц, почти на два порядка выше. Причем в чистом виде вещество признано изолятором. Вероятно, настанет день, когда принцип действия конденсатора будет реализован не раствором, а серной кислотой. Известные свинцовые аккумуляторы по-другому запасают энергию (реакция). Рассмотренные варианты не единственные, распространены шире.

Глобально конденсаторы поделим двумя семействами:

  1. Электролитические (полярные).
  2. Неполярные.

Рассказывали обустройство первых. Разница ограничивается материалом обкладок. Оксид титана снабжен диэлектрической проницаемостью близкой сотне. Понятно, материал предпочтительней для создания высококлассных изделий. Стоимость кусается. Титанат бария демонстрирует диэлектрическую проницаемость повыше. Практически любой конденсатор сформирован обкладками. Диэлектрик добавляет емкости изделию. Чаще лучшие модели конденсаторов содержат ценные металлы: палладий, платину.

Маркировка, технические характеристики конденсаторов

Маркировка конденсаторов содержит параметр максимально допустимого рабочего напряжения. Обозначение приводится согласно ГОСТ 25486, затем уточнения достигают отраслевых стандартов. Например, номинал проставляется согласно ГОСТ 28364. Отдельного стандарта по электролитическим конденсаторам найти практически невозможно. Однако авторы сделали, читателям предлагаем проштудировать ГОСТ 27550. На корпусе любые виды конденсаторов содержат маркировку:

Маркировка корпуса

  • Логотип изготовителя.
  • Тип конденсатора.

Сложно сказать определенно, большинство электролитических конденсаторов снабжены маркировкой-литерой К, несколькими цифрами, часто разделенными дефисом. Следуя логике, найдем в интернете соответствующий стандарт либо другие материалы.

  • По правилам ГОСТ 28364, номинал состоит из 3-5 символов, присутствует буква.

П означает приставку пико, н – нано, мк – микро. Если номинал дополнен дробной частью, занимает последнее место, вослед литере. Емкостной ряд (неполный) значений приводится ГОСТ 28364 на примерах. Выполняются нормы этого стандарта практически? Не для электролитических конденсаторов. Вызвано, по-видимому, большими номиналами. Запросто на К50-6 встретите надпись наподобие 2000 мкФ. Согласно ГОСТ 28364, должно выглядеть наподобие 2м0. Для электролитических конденсаторов применяется ГОСТ 11076. Наряду с кодированными обозначениями (ГОСТ 28364) допускается традиционная запись (2000 мкФ). Видите, назначение конденсаторов часто определяет способ маркировки. Электролитические часто выступают составной частью фильтров цепи питания. Здесь нужен больший номинал, функциональность сильно отличается принципа действия конденсаторов разделительных ветвей цепей переменного тока.

  • Если по былым нормам рабочее напряжение маркировкой конденсатора ставилось на первое место, в современных моделях наоборот. Обозначение выражено вольтами.

Обозначения электролитического конденсатора

Подразумевается рабочее напряжение, не пробивное. Конденсаторные установки легко сгорают, сожженные повышенными значениями. Тоньше слой диэлектрика, проще происходит пробой. Существует противоречие между дистанцией, разделяющей обкладки (меньше — выше номинал) и желанием повысить рабочее напряжение.

  • Допустимое отклонение емкости чаще замалчиваются.

Процесс старения выводит номинал за рабочие пределы. Можно сказать, что то, для чего нужен конденсатор, не изготовишь при помощи просроченных изделий. Однако радиолюбители делают по-своему. Прозванивают конденсатор, определяют новый номинал, заручившись помощью тестера, пользуются.

  • Литера В стоит для конденсаторов всеклиматического исполнения.
  • Перед зарядкой конденсатора попробуйте понять, полярный ли (электролитический).

Изделие способно взорваться. Разумеется, полярный конденсатор нельзя включать в цепь переменного тока. Единого типа маркировки не предусмотрено, оговаривается бумаги: требования могут быть указаны отраслевыми техническими условиями. Например, знаки плюса/минуса. На импортных изделиях отрицательный полюс помечается светлой полосой темного корпуса.

  • Обозначение довершается датой выпуска (месяц, год), ценой.

Понятно, последнее при современных экономических условиях неактуально.

Обратите внимание, конденсатор способен долго хранить заряд. Чревато опасностью получить удар током. Любой ремонтник, работающий с радиоаппаратурой, знает: началу ремонта импульсного блока питания предшествует процесс разрядки конденсатора. Чаще делается при помощи запрещенной стандартами лампочки, вкрученной в патрон. Два оголенных провода замыкают на токонесущие части цепи, импульс на короткое время зажигает спираль. Кстати, конструкцию часто вставляют взамен предохранителей, чтобы понять, по-прежнему ли ток велик в цепи (означает наличие неисправности, вызывает необходимость дальнейшей диагностики).

Выявление неисправности конденсатора требует сноровки, при наличии специфических знаний осуществимо. Нужно иметь на руках простейший мультиметр. Уже рассказывали, как проверить конденсатор при помощи тестера, направляем читателей на соответствующий обзор, сами с позволения почтенной публики спешим откланяться.

vashtehnik.ru

Электролитический конденсатор — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Электролитические конденсаторы — конденсаторы, которые в качестве диэлектрика используют тонкую оксидную пленку, нанесенную на поверхность одного из электродов (металлического) — анода, а в роли второго электрода — катода — выступает электролит. Главная особенность электролитических конденсаторов состоит в том, что они, по сравнению с другими типами конденсаторов, обладают большой ёмкостью при достаточно небольших габаритах, кроме того, они являются полярными электрическими накопителями, иначе говоря, должны включаться в электрическую цепь с соблюдением полярности. Существуют и «неполярные» электролитические конденсаторы, но при равной ёмкости их габариты больше (как и цена).

Устройство электролитического конденсатора

Электролитические конденсаторы устроены, как правило, следующим образом: слой электролита заключается между электродами с металлическим типом проводимости, один из которых покрыт тонким слоем диэлектрика (оксидной плёнкой). За счёт чрезвычайно малой толщины диэлектрика, ёмкость конденсатора достигает значительных величин. Однако, соприкосновение двух проводящих пластин, разделённых тонким диэлектриком не является идеальным, для устранения воздушного зазора, в пространство между пластинами вводят электролит. В качестве электролита часто используют концентрированные растворы кислот и щелочей.

По типу наполнения электролитом электролитические конденсаторы можно разделить на: жидкостные, сухие, оксидно-полупроводниковые и оксидно-металлические.

В жидкостных конденсаторах используют жидкий электролит, для увеличения ёмкости анод изготавливают объёмно-пористым, например, путём прессования порошка металла и спекания его при высокой температуре. В сухих конденсаторах применяется вязкий электролит. В этом случае конденсатор, изготавливается из двух лент фольги (оксидированной и неоксидированной), между которыми размещается прокладка из бумаги или ткани, пропитанная электролитом. В оксидно-полупроводниковых конденсаторах в качестве катода используется проводящий оксид (диоксид марганца). В оксидно-металлических функции катода выполняет металлическая пленка оксидного слоя.

Изготовляемые промышленностью алюминиевые электролитические конденсаторы состоят из двух тонких алюминиевых пластин. Между пластинами помещается бумага, пропитанная электролитом. Данная сборка сворачивается спиралью и упаковывается в корпус с двумя электрическими выводами. Под действием электролита и приложенного электрического напряжения, алюминиевая фольга анода окисляется, на поверхности фольги образуется тонкий слой диэлектрика — оксида алюминия.

Приложенное внешнее напряжение влияет на срок службы конденсатора. При напряжении обратной полярности, процесс регенерации диэлектрического слоя прекращается, он постепенно разрушается, приводя к повышенным значениям токов утечки, что приводит к повреждению электрической схемы, причем все это сопровождается выделением тепла, появлением дыма и ядовитых испарений в самом конденсаторе, что может привести ко взрыву. Поэтому, электролитические конденсаторы способны работать лишь в цепях с пульсирующим, либо постоянным током.

Особенности применения электролитических конденсаторов

Электролитические конденсаторы (в радиотехнике часто используется сокращение «электролиты») являются низкочастотными элементами электрической цепи, их редко применяют для работы на частотах выше 30 кГц. В основном, они служат для сглаживания пульсирующего тока в цепях выпрямителей переменного тока. Кроме этого, электролитические конденсаторы широко используются в звуковоспроизводящей технике. Электролитические конденсаторы разделяют пульсирующий ток (ток звуковой частоты + постоянная составляющая) на переменную составляющую тока звуковой частоты, которая подаётся на следующий каскад усиления и постоянную составляющую, которая не поступает на последующий каскад усиления. Такие конденсаторы называют разделительными.

В связи с тем, что электролитические конденсаторы полярны, при работе на их обкладках должно поддерживаться не изменяющее знака напряжение, что является их недостатком. Включение конденсатора с обратной к рабочей полярностью дает увеличение тока утечки, деградации параметров, и даже может привести к взрыву конденсатора при достаточной мощности цепи. По этой причине, их можно применять только в цепях, где полярность напряжения на конденсаторе неизменна (с пульсирующим или постоянным напряжением).

Электролиты обладают заметным последовательным сопротивлением, которое может достигать значения порядка 1 Ом, а его значение возрастает с ростом рабочей частоты. Причина этого эффекта — сравнительно низкая проводимость и подвижность ионов электролита.

Широко распространённые алюминиевые конденсаторы по сравнению с другими конденсаторами имеют некоторые специфические свойства, которые следует учитывать при их использовании. За счёт того, что алюминиевые обкладки электролитических конденсаторов скручивают для помещения в цилиндрический корпус, образуется индуктивность, эта индуктивность во многих случаях нежелательна.

На верхней части цилиндрического корпуса радиальных электролитических конденсаторов нанесена защитная насечка — клапан. Дело в том, что если на электролит воздействует переменное напряжение, то конденсатор сильно разогревается и жидкий электролит расширяется. Корпус конденсатора может лопнуть. Поэтому на корпусе и наносится защитный клапан, чтобы под действием избыточного давления он предотвратил взрыв конденсатора, выпустив закипающий электролит наружу.

Из-за невозможности достичь достаточной герметизации корпуса, жидкий электролит со временем высыхает. При этом теряется ёмкость конденсатора. Также высыханию электролита способствует нагрев. Поэтому на корпусе практически любого электролитического конденсатора указывается допустимый диапазон рабочей температуры. Например, от −40 до +105 °C.

Вышедший из строя электролитический конденсатор часто служит причиной неисправности бытовой радиоэлектронной аппаратуры.

Напишите отзыв о статье «Электролитический конденсатор»

Ссылки

  • [www.go-radio.ru/properties-electrolytic-capacitors.html Свойства электролитического конденсатора]

Отрывок, характеризующий Электролитический конденсатор

Один молодой белокурый солдат – еще князь Андрей знал его – третьей роты, с ремешком под икрой, крестясь, отступал назад, чтобы хорошенько разбежаться и бултыхнуться в воду; другой, черный, всегда лохматый унтер офицер, по пояс в воде, подергивая мускулистым станом, радостно фыркал, поливая себе голову черными по кисти руками. Слышалось шлепанье друг по другу, и визг, и уханье.
На берегах, на плотине, в пруде, везде было белое, здоровое, мускулистое мясо. Офицер Тимохин, с красным носиком, обтирался на плотине и застыдился, увидав князя, однако решился обратиться к нему:
– То то хорошо, ваше сиятельство, вы бы изволили! – сказал он.
– Грязно, – сказал князь Андрей, поморщившись.
– Мы сейчас очистим вам. – И Тимохин, еще не одетый, побежал очищать.
– Князь хочет.
– Какой? Наш князь? – заговорили голоса, и все заторопились так, что насилу князь Андрей успел их успокоить. Он придумал лучше облиться в сарае.
«Мясо, тело, chair a canon [пушечное мясо]! – думал он, глядя и на свое голое тело, и вздрагивая не столько от холода, сколько от самому ему непонятного отвращения и ужаса при виде этого огромного количества тел, полоскавшихся в грязном пруде.
7 го августа князь Багратион в своей стоянке Михайловке на Смоленской дороге писал следующее:
«Милостивый государь граф Алексей Андреевич.
(Он писал Аракчееву, но знал, что письмо его будет прочтено государем, и потому, насколько он был к тому способен, обдумывал каждое свое слово.)
Я думаю, что министр уже рапортовал об оставлении неприятелю Смоленска. Больно, грустно, и вся армия в отчаянии, что самое важное место понапрасну бросили. Я, с моей стороны, просил лично его убедительнейшим образом, наконец и писал; но ничто его не согласило. Я клянусь вам моею честью, что Наполеон был в таком мешке, как никогда, и он бы мог потерять половину армии, но не взять Смоленска. Войска наши так дрались и так дерутся, как никогда. Я удержал с 15 тысячами более 35 ти часов и бил их; но он не хотел остаться и 14 ти часов. Это стыдно, и пятно армии нашей; а ему самому, мне кажется, и жить на свете не должно. Ежели он доносит, что потеря велика, – неправда; может быть, около 4 тысяч, не более, но и того нет. Хотя бы и десять, как быть, война! Но зато неприятель потерял бездну…
Что стоило еще оставаться два дни? По крайней мере, они бы сами ушли; ибо не имели воды напоить людей и лошадей. Он дал слово мне, что не отступит, но вдруг прислал диспозицию, что он в ночь уходит. Таким образом воевать не можно, и мы можем неприятеля скоро привести в Москву…
Слух носится, что вы думаете о мире. Чтобы помириться, боже сохрани! После всех пожертвований и после таких сумасбродных отступлений – мириться: вы поставите всю Россию против себя, и всякий из нас за стыд поставит носить мундир. Ежели уже так пошло – надо драться, пока Россия может и пока люди на ногах…
Надо командовать одному, а не двум. Ваш министр, может, хороший по министерству; но генерал не то что плохой, но дрянной, и ему отдали судьбу всего нашего Отечества… Я, право, с ума схожу от досады; простите мне, что дерзко пишу. Видно, тот не любит государя и желает гибели нам всем, кто советует заключить мир и командовать армиею министру. Итак, я пишу вам правду: готовьте ополчение. Ибо министр самым мастерским образом ведет в столицу за собою гостя. Большое подозрение подает всей армии господин флигель адъютант Вольцоген. Он, говорят, более Наполеона, нежели наш, и он советует все министру. Я не токмо учтив против него, но повинуюсь, как капрал, хотя и старее его. Это больно; но, любя моего благодетеля и государя, – повинуюсь. Только жаль государя, что вверяет таким славную армию. Вообразите, что нашею ретирадою мы потеряли людей от усталости и в госпиталях более 15 тысяч; а ежели бы наступали, того бы не было. Скажите ради бога, что наша Россия – мать наша – скажет, что так страшимся и за что такое доброе и усердное Отечество отдаем сволочам и вселяем в каждого подданного ненависть и посрамление. Чего трусить и кого бояться?. Я не виноват, что министр нерешим, трус, бестолков, медлителен и все имеет худые качества. Вся армия плачет совершенно и ругают его насмерть…»

В числе бесчисленных подразделений, которые можно сделать в явлениях жизни, можно подразделить их все на такие, в которых преобладает содержание, другие – в которых преобладает форма. К числу таковых, в противоположность деревенской, земской, губернской, даже московской жизни, можно отнести жизнь петербургскую, в особенности салонную. Эта жизнь неизменна.
С 1805 года мы мирились и ссорились с Бонапартом, мы делали конституции и разделывали их, а салон Анны Павловны и салон Элен были точно такие же, какие они были один семь лет, другой пять лет тому назад. Точно так же у Анны Павловны говорили с недоумением об успехах Бонапарта и видели, как в его успехах, так и в потакании ему европейских государей, злостный заговор, имеющий единственной целью неприятность и беспокойство того придворного кружка, которого представительницей была Анна Павловна. Точно так же у Элен, которую сам Румянцев удостоивал своим посещением и считал замечательно умной женщиной, точно так же как в 1808, так и в 1812 году с восторгом говорили о великой нации и великом человеке и с сожалением смотрели на разрыв с Францией, который, по мнению людей, собиравшихся в салоне Элен, должен был кончиться миром.
В последнее время, после приезда государя из армии, произошло некоторое волнение в этих противоположных кружках салонах и произведены были некоторые демонстрации друг против друга, но направление кружков осталось то же. В кружок Анны Павловны принимались из французов только закоренелые легитимисты, и здесь выражалась патриотическая мысль о том, что не надо ездить во французский театр и что содержание труппы стоит столько же, сколько содержание целого корпуса. За военными событиями следилось жадно, и распускались самые выгодные для нашей армии слухи. В кружке Элен, румянцевском, французском, опровергались слухи о жестокости врага и войны и обсуживались все попытки Наполеона к примирению. В этом кружке упрекали тех, кто присоветывал слишком поспешные распоряжения о том, чтобы приготавливаться к отъезду в Казань придворным и женским учебным заведениям, находящимся под покровительством императрицы матери. Вообще все дело войны представлялось в салоне Элен пустыми демонстрациями, которые весьма скоро кончатся миром, и царствовало мнение Билибина, бывшего теперь в Петербурге и домашним у Элен (всякий умный человек должен был быть у нее), что не порох, а те, кто его выдумали, решат дело. В этом кружке иронически и весьма умно, хотя весьма осторожно, осмеивали московский восторг, известие о котором прибыло вместе с государем в Петербург.

wiki-org.ru

Электролитический конденсатор — это… Что такое Электролитический конденсатор?

Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик

Слева — конденсаторы для поверхностного монтажа; справа — конденсаторы для объёмного монтажа; сверху — керамические; снизу — электролитические.

Различные конденсаторы для объёмного монтажа

Конденса́тор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

История

В 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку».

Свойства конденсатора

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.

В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом

,

где — мнимая единица, — частота[1] протекающего синусоидального тока, — ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью , собственной индуктивностью и сопротивлением потерь .

Резонансная частота конденсатора равна

При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.

Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

где — напряжение (разность потенциалов), до которого заряжен конденсатор.

Обозначение конденсаторов на схемах

В России условные графические обозначения конденсаторов на схемах должны соответствовать ГОСТ 2.728-74[2] либо международному стандарту IEEE 315-1975:

Обозначение
по ГОСТ 2.728-74
Описание
Конденсатор постоянной ёмкости
Поляризованный конденсатор
Подстроечный конденсатор переменной ёмкости

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 106 пФ) и пикофарадах, но нередко и в нанофарадах. При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, т.е. постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мк x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 – 180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24, т.е. на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.

Характеристики конденсаторов

Основные параметры

Ёмкость

Основной характеристикой конденсатора является его ёмкость. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (эта формула справедлива, лишь когда много меньше линейных размеров пластин).

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

или

Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равна

или

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

Удельная ёмкость

Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

Номинальное напряжение

Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.

Полярность

Конденсаторы, разрушившиеся без взрыва из-за температуры и напряжения, не соответствующих рабочим.

Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Взрывы электролитических конденсаторов — довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы X, K или Т на торце). При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа, и давление спадает без взрыва и осколков.

Паразитные параметры

Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью. С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:

Электрическое сопротивление изоляции конденсатора — r

Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением r = U / Iут , где U — напряжение, приложенное к конденсатору, Iут — ток утечки.

Эквивалентное последовательное сопротивление — R

Эквивалентное последовательное сопротивление (ЭПС, англ. ESR) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор.

В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см., напр., Capacitor plague(англ.)).

Эквивалентная последовательная индуктивность — L

Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу своей незначительности.

Тангенс угла потерь

Тангенс угла потерь — отношение мнимой и вещественной части комплексной диэлектрической проницаемости.

Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол , где — угол диэлектрических потерь. При отсутствии потерь . Тангенс угла потерь определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, обратная , называется добротностью конденсатора. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов.

Температурный коэффициент ёмкости (ТКЕ)

ТКЕ — относительное изменению емкости при изменении температуры окружающей среды на один градус Цельсия (Кельвина). Таким образом значение ёмкости от температуры представляется линейной формулой:

,

где ΔT — увеличение температуры в °C или °К относительно нормальных условий, при которых специфицировано значение ёмкости. TKE применяется для характеристики конденсаторов со значительной линейной зависимостью ёмкости от температуры. Однако ТКЕ определяется не для всех типов конденсаторов. Конденсаторы, имеющие нелинейную зависимость емкости от температуры, и конденсаторы с большими уходами емкости от воздействия температуры окружающей среды в обозначении имеют указание на относительное изменение емкости в рабочем диапазоне температур.

Диэлектрическое поглощение

Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение или адсорбция электрического заряда. Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Подобный эффект можно наблюдать и на большинстве электролитических конденсаторов, но в них он является следствием химических реакций между электролитом и обкладками. Наименьшим диэлектрическим поглощением обладают конденсаторы с органическими диэлектриками: тефлон (фторопласт), полистирол, полиэтилентерефталат, поликарбонат.

Классификация конденсаторов

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  • Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
  • Конденсаторы с газообразным диэлектриком.
  • Конденсаторы с жидким диэлектриком.
  • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
  • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спеченного порошка.

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

  • Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  • Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термо­конденсаторы). Применяются, например, в радиоприемниках для перестройки частоты резонансного контура.
  • Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.

Применение конденсаторов

Конденсаторы находят применение практически во всех областях электротехники.

  • Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
  • Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора.
  • ИП влажности воздуха (изменение состава диэлектрика приводит к изменению емкости)
  • ИП влажности древесины
  • В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит. В частности, в схеме работы АПВ использование конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.

Внешние ссылки

Смотри также

Ссылки

  1. Частота в радианах в секунду.
  2. ГОСТ 2.728-74 (2002)

dic.academic.ru

Электролитический конденсатор Википедия

Обозначение на электрических схемах

Электролити́ческие конденсаторы — разновидность конденсаторов, в которых диэлектриком между обкладками является плёнка оксида металла между металлом электрода электролита. Слой этого оксида получают методом электрохимического анодирования, что обеспечивает высокую однородность по толщине и диэлектрическим свойствам диэлектрика конденсатора. Технологическая лёгкость получения тонкой однородной плёнки диэлектрика на большой площади электрода позволила наладить массовое производство дешёвых конденсаторов с весьма высокими значениями показателями электрической ёмкости.

Общие сведения[ | ]

Наибольшее распространение получили алюминиевые электролитические конденсаторы (англ.)русск., в которых одной обкладкой конденсатора применяется алюминиевая фольга. Также распространены танталовые (англ.)русск. и ниобиевые (англ.)русск. электролитические конденсаторы, в котором металлическим электродом была пористая металлическая губка тантала или ниобия, поверхность металла покрыта оксидными плёнками. Второй обкладкой электролитического конденсатора служит жидкий или твёрдый электролит — вещество или композиция веществ, обеспечивающих электропроводность и сохранение оксидной плёнки.

Электрохимические процессы получения и стабилизации оксидной плёнки диэлектрика требует определённой полярности напряжения на границе металл-электролит. Металлический электрод должен быть анодом (то есть обладать положительным потенциалом), а электролит — катодом (отрицательный потенциал). Несоблюдение полярности вызывает потерю диэлектрических свойств оксидной плёнки и возможное короткое замыкание между обкладками. Если источник этого отрицательного напряжения не ограничивает ток на безопасном низком уровне, то электролит нагреется протекающим током, закипит и давление образующихся газов разорвёт корпус конденсатора. Выпускаются и так называемые неполярные электролитические конденсаторы, в которых конструктивно размещено два встречно-последовательно включённых обычных полярных электролитических конденсатора, которые допускают изменение полярности приложенного напряжения.

Состав электролита подбирается таким образом, чтобы в процессе работы восстанавливались мелкие повреждения в оксидной плёнке электрохимическим анодированием при рабочих напряжениях конденсатора. Однако при этом химическом процессе электролиза выделяется газ, давление которого приводит к вздутию корпуса и даже его возможному разрыву. Также к вскипанию электролита может приводить большой ток через конденсатор, например при обратной полярности включения или при протекании большого реактивного тока при больших пульсациях напряжения на конденсаторе.

Для конденсаторов с жидким электролитом существует проблема высыхания, когда растворитель из электролита испаряется из конденсатора через неплотности герметизации корпуса. При высыхании конденсатор теряет ёмкость и увеличивается последовательное паразитное сопротивление.

ru-wiki.ru

Электролитический конденсатор. Устройство электролитического конденсатора


Устройство электролитического конденсатора

В каждом современном бытовом приборе, как правило, есть электролитические конденсаторы. В отличие от других типов конденсаторов, электролитические конденсаторы являются обычно полярными, то есть включаются в цепь исключительно определенным образом, с соблюдением полярности. Основным же преимуществом электролитических конденсаторов является их компактность при довольно существенной емкости в отличие от иных типов конденсаторов. Размер тем больше, чем больше емкость и чем выше допустимое рабочее напряжение.

Электролитические конденсаторы выпускаются традиционно емкостью до 1 фарады и на допустимое рабочее напряжение до 400 вольт. Однако с развитием технологий эти значения все время увеличиваются. В качестве диэлектрика в таких конденсаторах используется тонкий слой оксидной пленки, наносимый на протравленный алюминиевый положительный (анод) электрод методом анодного оксидирования. За счет весьма малой толщины оксидной пленки на аноде, (до 1 микрона) электроемкость такого конденсатора получается весьма значительной. Второй электрод (катод) также алюминиевый, он также подвергается травлению. Это делается для придания поверхности шероховатости для улучшения контакта. Электроды разделены обычно слоем пропитанной электролитом пористой бумаги, которая выступает в качестве вспомогательного электрода для катода, а также предотвращает контакт между анодной и катодной пластинами фольги. Пластины с выводами, вместе с пропитанной электролитом бумагой скручиваются в плотный цилиндр, который запечатывается в цилиндрический алюминиевый корпус.

Обычно электролитические конденсаторы рассчитаны на работу в диапазоне температур от минус 40 до плюс 150 градусов Цельсия, а в качестве вспомогательных мер для охлаждения, может быть предусмотрена возможность крепления корпуса на внешний радиатор.

Выводы электродов таких конденсаторов различаются в зависимости от типа корпуса и предполагаемого способа монтажа: под винт, проволочные, защелкиваемые и другие.

Лучшее сочетание вакуумных и          полупроводниковых характеристик — однотактный гибридный усилитель звука.

          Мы не создаём иллюзий,          Мы делаем звук живым!

grimmi.ru

Электролитический конденсатор — Википедия

Обозначение на электрических схемах

Электролитические конденсаторы — конденсаторы, которые в качестве диэлектрика используют тонкую оксидную пленку, нанесенную на поверхность одного из электродов (металлического) — анода, а в роли второго электрода — катода — выступает электролит. Главная особенность электролитических конденсаторов состоит в том, что они, по сравнению с другими типами конденсаторов, обладают большой ёмкостью при достаточно небольших габаритах, кроме того, они являются полярными электрическими накопителями, иначе говоря, должны включаться в электрическую цепь с соблюдением полярности. Существуют и «неполярные» электролитические конденсаторы, но при равной ёмкости их габариты больше (как и цена).

Устройство электролитического конденсатора[править]

Электролитические конденсаторы устроены, как правило, следующим образом: слой электролита заключается между электродами с металлическим типом проводимости, один из которых покрыт тонким слоем диэлектрика (оксидной плёнкой). За счёт чрезвычайно малой толщины диэлектрика, ёмкость конденсатора достигает значительных величин. Однако, соприкосновение двух проводящих пластин, разделённых тонким диэлектриком не является идеальным, для устранения воздушного зазора, в пространство между пластинами вводят электролит. В качестве электролита часто используют концентрированные растворы кислот и щелочей.

По типу наполнения электролитом электролитические конденсаторы можно разделить на: жидкостные, сухие, оксидно-полупроводниковые и оксидно-металлические.

В жидкостных конденсаторах используют жидкий электролит, для увеличения ёмкости анод изготавливают объёмно-пористым, например, путем прессования порошка металла и спекания его при высокой температуре. В сухих конденсаторах применяется вязкий электролит. В этом случае конденсатор, изготавливается из двух лент фольги (оксидированной и неоксидированной), между которыми размещается прокладка из бумаги или ткани, пропитанная электролитом. В оксидно-полупроводниковых конденсаторах в качестве катода используется проводящий оксид (диоксид марганца). В оксидно-металлических функции катода выполняет металлическая пленка оксидного слоя.

Изготовляемые промышленностью алюминиевые электролитические конденсаторы состоят из двух тонких алюминиевых пластин. Между пластинами помещается бумага, пропитанная электролитом. Данная сборка сворачивается спиралью и упаковывае

szemp.ru