Utc транзистор – Основные параметры транзистора | Практическая электроника

Содержание

UTC

О компании UTC

UTC (Unisonic Technologies Company) основана в 1998, как производитель высококачественной полупроводниковой продукции для производителей электронной техники в различных сегментах рынка.

UTC имеет множество стратегических партнеров в Китае и Тайване, в основном это дизайнерские центры разработок и фабрики по производству пластин. Сеть представительств компании раскинута на протяжении всего материкового Китая, Тайваня, Сингапура, Кореи и Гонконга.

Передовые технологии производства, профессионализм персонала и мощная маркетинговая поддержка – вот слагаемые успеха UTC. В какой отрасли Вы бы не работали, UTC всегда предложит самые высококачественные микросхемы для аналоговых и цифровых применений. Создавайте эффективные решения вместе с UTC.

Выпускаемая продукция: регуляторы напряжения, контроллеры источников питания, компараторы, операционные усилители, таймеры, звуковые усилители, телекоммуникационные микросхемы, драйверы двигателей, микросхемы для радиоприемников и магнитофонов, микросхемы для ТВ приемников, драйверы интерфейсов, контроллеры коэффициента мощности, звуковоспроизводящие микросхемы, детекторы тока утечки, микросхемы на основе датчиков Холла, супервизоры питания, контроллеры клавиатур и мышек, контроллеры дистанционных пультов управления, микросхемы управления декоративными огнями, звуковые микросхемы.

www.compel.ru

Биполярный транзистор — принцип работы для чайников!

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы  и вообще с чем его едят, то берем  стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание,  будет удобнее ориентироваться в статье 🙂

[contents]

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы.  Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу  у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу  а уделим внимание каждому, индивидуально.

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут  так.

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие,  выглядит как-то так.

Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой.    В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто  прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа,  при прозвонке  создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора  n-p-n типа  диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

 

 Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Это изображение лучше всего объясняет принцип работы  транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h31Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

  1. Коллектор имеет более положительный потенциал , чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

-коэффициент усиления по току.

Его также обозначают как 

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате  ток базы  отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора.  В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи.  Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы  эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

Чтож, теперь давайте попробуем рассчитать значение базового резистора.

На сколько мы знаем, что значение тока это характеристика нагрузки.

Т.е. I=U/R

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи  того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате  мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе  может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор  Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае  мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством.  Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора.  И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть  схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в  любом ближайшем  магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине. Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.

Желаю вам удачи, успехов  и солнечного настроения!

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

popayaem.ru

Основные параметры транзистора | Практическая электроника

Основные параметры биполярного транзистора описаны в любом даташите. Для того, чтобы понять характеристики транзистора, надо научиться читать его основные параметры. Не зная этих параметров, можно накосячить при конструировании своих радиоэлектронных безделушек. Погнали!

1) Из первой ст атьи про биполярный транзистор, мы помним, что его производят из двух веществ — это германий и кремний. Следовательно, по материалу, из которых их производят, все биполярники делятся на кремниевые и германиевые. Почему же идет такая классификация? Как вы помните из предыдущих статей, для того, чтобы транзистор «открылся» на германиевый транзистор надо подать 0,2-0,3 Вольта, а на кремниевый 0,6-0,7 Вольт. Кремниевый транзистор выдерживает температуру эксплуатации до 150 градусов по Цельсию, тогда как германиевый только до 70 градусов. Обратный коллекторный ток у кремниевого транзистора намного меньше, чем у германиевого, что кстати, тоже немаловажный параметр.

2) Проводимость NPN или PNP. С этим, думаю, уже все понятно

3) Коэффициент усиления по  току в схеме с Общим Эмиттером (ОЭ)

4) Обратный коллекторный ток  IКБО (ICBO)

Откуда вообще берутся эти обозначения индексов? Снизу синим маркером я пометил эти индексы:

Оказывается, все до боли просто.

Первая буква индекса — первый вывод транзистора, вторая буква — второй вывод транзистора, ну а третья буква обозначает оставшийся вывод и его условие, при котором производится этот замер. Самая распространенная третья буква — это «О». Но скорее всего это даже и не буква, а цифра «ноль». Она говорит о том, что на третьем выводе напряжение равняется нулю. Это достигается тем, что оставшийся третий вывод никуда не подключен и висит в воздухе.

Например, IКБО говорит нам о том, что это ток (сила тока), между коллектором и базой, при условии, что напряжение на эмиттере равняется нулю. То есть эмиттер отключен.

Есть также более интересные условия, но они встречаются редко. Например, буква «К» от слова «короткий» (в англ.варианте «Shot»). Такой параметр как UКЭК говорит нам о том, что это напряжение между коллектором и эмиттером, при условии, что база и эмиттер замкнуты накоротко, или детским языком, база  с эмиттером соединены проводочком. Здесь последняя буква говорит нам об оставшемся выводе и условии, которое происходит между этим выводом и буковкой-выводом которая рядом.

Также иногда встречается буква «R», которая обозначает, как ни странно, сопротивление. Например UКЭR говорит о том, что это напряжение между коллектором и эмиттером при условии что база и эмиттер соединены сопротивлением. И рядышком в справочнике приводится номинал этого сопротивления.

Также часто встречается вместо третьей буквы индекса обозначение «нас» или на буржуйский манер «sat». «Нас» — кратко от «насыщение», то же самое и «»sat» — saturation  в переводе на русский  — насыщение. Например, UКЭ нас (VCEsat) — это напряжение насыщения коллектор-эмиттер.

И еще один нюанс… порядок индексов совпадает с положительным направлением тока. Что это значит? Например, UКЭ напряжение между коллектором и эмиттером. Значит ток движется от коллектора к эмиттеру. Но если мы поменяем индексы вот так UЭК у нас это будет уже обозначать, что электрический ток движется от эмиттера к коллектору. Справедливы также следующие выражения:

UКЭ= — UЭК и так далее.

5) Максимальное допустимое обратное напряжение между коллектором и базой UКБ макс (VCBO — это максимальное обратное напряжение, которое может выдержать коллекторный P-N переход при открытом эмиттере (эмиттер ни с чем не связан и его ножка болтается в воздухе, короче говоря, на эмиттере ноль)

Для NPN транзистора это будет выглядеть так:

Для NPN транзистора этот параметр показан с плюсом. Оно и понятно, индексы  идут как «КБ», что означает коллектор «плюсовый» а база «минусовая».

Вот, например, этот параметр для транзистора BC337 структуры NPN:

Как вы видите, параметр VCBO показан с плюсом.

Чтобы не мудрить с индексами, для PNP транзистора ставят просто тупо минус перед циферками в даташите, которое говорит нам о том, что напряжение подаем в обратной полярности. В некоторых даташитах знак «минус» не указан, но все равно имейте ввиду, что это обратное напряжение на P-N переходе.

Например как в этом даташите на транзистор S8550 PNP структуры. Видите перед цифрой «30» знак минус? Если бы мы поменяли индексы, то получили бы, что VBCO =30 Вольт. Знак «минус» тогда бы исчез, но в то же время у нас индексы поменялись (я их даже выделил жирным шрифтом).

То есть тут мы видим, что это напряжение тоже обратное.

6) Максимальное допустимое напряжение между эмиттером и базой UЭБ макс (VЕВО)  — это напряжение, которое может выдержать эмиттерный P-N переход, если приложить напряжение в обратном направлении, при условии, что коллектор у нас никуда не цепляется. Похожий параметр, но только  уже для эмиттерного перехода.

Для NPN транзистора это выглядит вот так и напряжение в даташите указывается с плюсом:

А для PNP как-то так:

Для PNP этот параметр также идет с минусом, чтобы не переставлять индексы:

7) Максимальное допустимое напряжение между коллектором и эмиттером UКЭ макс (UКЭО). Максимальное напряжение между коллектором и эмиттером по направлению стрелочки эмиттера , при условии что база  никуда не цепляется. Для PNP транзистора этот параметр также идет с минусом.

8) Максимальная мощность, рассеиваемая на коллекторе PK макс (PC max). Это максимальная мощность, которую транзистор может рассеять на себе в окружающее пространство.

Например, для транзистора S8550 это значение равняется 1 Ватту.

Чтобы его не превысить, нужно рассчитать какую мощность будет рассеивать ваш транзистор по формуле:

P=UK x IK

где

P — это мощность, которая рассеивается на транзисторе

U— напряжение на коллекторе относительно минуса

I— ток коллектора

Рассеивание мощности транзистором означает, что на нем будет выделяться тепло, которое рассеивается в окружающее пространство. Поэтому, чтобы отвести это тепло от транзистора, применяют радиаторы:

Особенно это касается мощных транзисторов, через которые текут большие токи и напряжения. Как я уже говорил, для кремниевых транзисторов критическая температура нагрева это 150 градусов по Цельсию, для германиевых 70. Так что следите за температурой, если не хотите получить в результате уголек с дымом. Иными словами если Р превысит PК макс, то вашему транзистору придет жопа.

9) Максимально допустимый коллекторный ток IK макс (Ic max). Превышение этого номинала приводит к пробою переходов, выгоранию тонких токоведущих проводов, которые соединяют ножку транзистора с кристаллом полупроводника. Ну и чем больше ток, тем разумеется и больше мощность, выделяемая транзистором, значит  будет больше нагрев.

10) Граничная частота передачи тока fгр .  Это частота, на которой коэффициент β (коэффициент усиления по току) становится равным единице. Так что отсюда вывод, что не каждый транзистор будет усиливать высокочастотные колебания. Поэтому в радиоприемной и радиопередающей аппаратуре используются транзисторы с высокой граничной частотой.

Различных других параметров транзистора туева куча. Здесь же я привел те параметры, на которые следует обращать внимание при проектировании своих электронных безделушек. Некоторые параметры в одной книге обозначают так, в другой эдак, в третьей совсем по-другому. Не могу сказать, что мои названия и обозначение параметров образцовые, но все-таки старался обозначить как в большинстве учебной литературы, чтобы было понятно каждому начинающему электронщику.

Продолжение——>

<——-Предыдущая статья

www.ruselectronic.com

Utc Транзистор | Шопеликс

HQCAM HQCAM UTC Remote Controller for CCTV Camera Free Shipping (Not Include Battery) Videre Remote OSD Over BNC UTC ControllerUtc ТранзисторОписание товара:

Бренд: / Цена: 835.62 ₽

Соединитель лент прямой жесткий Uniel UTC-K-14 [10 мм, RGB] 10826Utc ТранзисторОписание товара: Артикул — UL_10826, Бренд — Uniel, Серия — UTC-K-14, Гарантия, месяцев — 24, Время изготовления, дней — 1, Компоненты, входящие в комплект — 5 прямых соединителей для светодиодных лент 5050 RGB на 4 контакта, Цвет арматуры — неокрашенный, Тип поверхн…

Бренд: Uniel / Цена: 74 ₽

UTC контроллер переключения сигналов HDCVI/HDTVI/AHD/PAL 960H Dahua PFM820Utc ТранзисторОписание товара:

Бренд: Dahua / Цена: 2490 ₽

Autoeye 8CH AHD 5MP IMX326 Outdoor Waterproof Surveillance Camera System AHD Camera Kit UTC Control SupportedUtc ТранзисторОписание товара:

Бренд: / Цена: 34273.17 ₽

1280*720 AHD Camera Module Board XM320+2235 BNC UTC DC 12V CCTV Security SurveillanceUtc ТранзисторОписание товара:

Бренд: / Цена: 327.56 ₽

UTC Menu Remote Controller for AHD CVBS ANALOG Switch CCTV Surveillance CameraUtc ТранзисторОписание товара:

Бренд: / Цена: 938.57 ₽

Коннектор для светодиодных лент 5050 (06606) Uniel UTC-L-2/B20-NNN White 020Utc ТранзисторОписание товара:

Бренд: Uniel / Цена: 18 ₽

4.3 inch UTC 5MP AHD Camera tester 5MP TVI test monitor 1080P CVI CCTV tester monitorUtc ТранзисторОписание товара:

Бренд: / Цена: 5543.85 ₽

Соединение прямое для светодиодной ленты (UL-00002929) Uniel UTC-K-12/N21 Clear 025 PolybagUtc ТранзисторОписание товара:

Бренд: Uniel / Цена: 28 ₽

HD 2.0Megapixel CCTV Camera Module PCB 2000TVL AHD Camera Board 0.01lux DC12V UTC Coaxial ControlUtc ТранзисторОписание товара:

Бренд: / Цена: 491.35 ₽

5MP AHD/CVI/TVI IN CCTV tester Support UTC control PTZ AHD Camera and TVI CameraUtc ТранзисторОписание товара:

Бренд: / Цена: 6004.44 ₽

4.3 inch UTC 5MP AHD Camera tester 5MP TVI test monitor 1080P CVI CCTV tester monitor DC 12V 5V outputUtc ТранзисторОписание товара:

Бренд: / Цена: 6117.42 ₽

Starlight 1080P AHD Camera Module Board with IMX307 and F1.2 4mm Lens UTC Coaxial OSD Control Colorful NightvisionUtc ТранзисторОписание товара:

Бренд: / Цена: 1219.34 ₽

AHD TVI CVI CVBS CCTV camera 1080P 4 in 1 2.8-12mm varifocal HD 2MP vandaproof dome IR CUT video security ahd camera OSD WDR UTCUtc ТранзисторОписание товара:

Бренд: / Цена: 3450.78 ₽

White 1080P 4 IN 1 AHD/TVI/CVI/CVBS Analog HD Security Camera For Elevator Lift With Waterproof Osd Menu 3.7mm Pin hole lens UTCUtc ТранзисторОписание товара:

Бренд: / Цена: 3339.14 ₽

Sony Starlight true WDR STARVIS CMOS sensor IMX290LQR security video IR camera 1080P waterproof outdoor support 3D DNR/UTC/D-WDRUtc ТранзисторОписание товара:

Бренд: / Цена: 2178.63 ₽

AHD/TVI 5MP FH8538M AHD Camera Surveillance Outdoor Waterproof Camera 2592(H)x1944(V) UTC control supported With IR Cut FilterUtc ТранзисторОписание товара:

Бренд: / Цена: 4185.46 ₽

New 1.3MP AHD TVI CVI Analog CVBS 4 IN 1 IR Night Vision UTC OSD Camera 2500TVL Camera Security CCTV CameraUtc ТранзисторОписание товара:

Бренд: / Цена: 1229.37 ₽

3X Zoom 1080P Motorized Lens AHD Mini PTZ Camera CCTV Camera Mini Security Camera with RS485 UTCUtc ТранзисторОписание товара:

Бренд: / Цена: 5204.25 ₽

shopelix.ru

Транзисторы [Амперка / Вики]

Транзистор — повсеместный и важный компонент в современной микроэлектронике.
Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо
более сильным.

В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала
на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это
кнопка, которая нажимается не пальцем, а подачей напряжения.
В цифровой электронике такое применение наиболее распространено.

Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:

  • TO-92 — компактный, для небольших нагрузок

  • TO-220AB — массивный, хорошо рассеивающий тепло, для больших нагрузок

Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.

Биполярные транзисторы

Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

  • Коллектор (collector) — на него подаётся высокое напряжение, которым хочется управлять

  • База (base) — через неё подаётся небольшой ток, чтобы разблокировать большой; база заземляется, чтобы заблокировать его

  • Эмиттер (emitter) — через него проходит ток с коллектора и базы, когда транзистор «открыт»

Основной характеристикой биполярного транзистора является показатель hfe
также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер
способен пропустить транзистор по отношению к току база–эмиттер.

Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит
через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент,
который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас».
Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные
10 мА.

Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на
контактах. Превышение этих величин ведёт к избыточному нагреву
и сокращению службы, а сильное превышение может привести к разрушению.

NPN и PNP

Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит
из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав
кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive —
с избытком положительных (p-doped).

NPN более эффективны и распространены в промышленности.

PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N.
PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется,
когда через неё идёт ток.

Полевые транзисторы

Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством.
Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).
Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой»
осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов,
не идёт.

Полевые транзисторы обладают тремя контактами:

  • Сток (drain) — на него подаётся высокое напряжение, которым хочется управлять

  • Затвор (gate) — на него подаётся напряжение, чтобы разрешить течение тока; затвор заземляется, чтобы заблокировать ток.

  • Исток (source) — через него проходит ток со стока, когда транзистор «открыт»

N-Channel и P-Channel

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор.
Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки
и, опять же, обладает «перевёрнутым» поведением.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер
обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В
выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении
таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется
напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения
не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый
ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора
hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET, позволяет управлять очень мощными компонентами.

wiki.amperka.ru

UTC7N65L to-263 | Полевые транзисторы

Код товара :M-132-6954
Обновление:2018-08-07
Тип корпуса :TO-263

 

 

Дополнительная информация:

Обратите внимание, что транзисторы одной марки могут иметь различный тип корпуса (исполнение), поэтому смотрите картинку и параметры корпуса. На нашем сайте опубликованы только основные параметры и характеристики. Полная информация о том как проверить UTC7N65L to-263, чем его заменить, схема включения, отечественный аналог, цоколевка, полный Datasheet и другие данные по этому транзистору, может быть найдена в PDF файлах раздела DataSheet и на сайтах поисковых систем Google, Яндекс и тд.

 

В магазине указаны розничные цены. Для оптовиков, мы готовы предложить оптовые цены (скидки), в этом случае, присылайте ваш запрос на наш емайл, мы отправим вам коммерческое предложение.

 

Что еще купить вместе с UTC7N65L to-263 ?

 

Огромное количество электронных компонентов и технической информации на сайте Dalincom, может затруднить Вам поиск и выбор требуемых дополнительных радиотоваров, радиодеталей, инструментов и тд. Следующую информационную таблицу мы подготовили для Вас, на основании выбора других наших покупателей.

 

Сопутствующие товары
КодНаименованиеКраткое описаниеРозн. цена
** более подробную информацию (фото, описание, маркировку, параметры, технические характеристики, и тд.) вы сможете найти перейдя по ссылке описания товара
6954UTC7N65L to-263Транзистор UTC7N65L — Power MOSFET N-Channel, 650V, 7A, TO-26332 pyб.
5787SVF7N65F to-220fpТранзисторы SVF7N65F (аналог FQB7N65, FQPF7N65, и тд) — Power MOSFET N-Channel, 650V, 7A, TO-220FP32 pyб.
3512FAN6755 sop-7Микросхемы FAN6755 (FAN6755WMYB, FAN6755U, FAN6755MYC) — PWM controller featuring green-mode, SOP-737 pyб.
6259IRFR15N20D (FR15N20D)Транзистор IRFR15N20D (маркировка FR15N20D)- Power MOSFET, N-Channel, 200V, 17A, TO-25229 pyб.
1658Щупы для мультиметра (модель FC-136)Набор из двух прочных универсальных щупов для различных мультиметров (тестеров). Длина провода 1 метр.95 pyб.
6921STB20NK50Z (B20NK50Z)Транзисторы STB20NK50Z (маркировка B20NK50Z)- Power MOSFET N-channel, 500V, 17A, 190W, TO-26343 pyб.
6876AO4618Транзисторные сборки AO4618 — Complementary MOSFET (N-Channel P-Channel), 40V, 8A, SOP-812 pyб.
6850FQPF17N40Транзистор FQPF17N40 — Power MOSFET N-Channel, 9.5A, 400V, TO-220FP32 pyб.
6853FQD5N20LТранзистор FQD5N20L (FQD5N20) — Power MOSFET N-Channel, 5A, 200V, TO-25225 pyб.
9132LD5530Микросхема LD5530 (LD5530RGL, маркировка 30R) — Green-Mode PWM Controller with Frequency Swapping and Integrated Protections, SOT23-618 pyб.

 

dalincom.ru

UTC8N70L to-220fp | Полевые транзисторы

Код товара :M-106-9548
Обновление:2017-04-22
Тип корпуса :TO-220FP

 

 

Дополнительная информация:

Обратите внимание, что транзисторы одной марки могут иметь различный тип корпуса (исполнение), поэтому смотрите картинку и параметры корпуса. На нашем сайте опубликованы только основные параметры и характеристики. Полная информация о том как проверить UTC8N70L to-220fp, чем его заменить, схема включения, отечественный аналог, цоколевка, полный Datasheet и другие данные по этому транзистору, может быть найдена в PDF файлах раздела DataSheet и на сайтах поисковых систем Google, Яндекс и тд.

 

В магазине указаны розничные цены. Для оптовиков, мы готовы предложить оптовые цены (скидки), в этом случае, присылайте ваш запрос на наш емайл, мы отправим вам коммерческое предложение.

 

Что еще купить вместе с UTC8N70L to-220fp ?

 

Огромное количество электронных компонентов и технической информации на сайте Dalincom, может затруднить Вам поиск и выбор требуемых дополнительных радиотоваров, радиодеталей, инструментов и тд. Следующую информационную таблицу мы подготовили для Вас, на основании выбора других наших покупателей.

 

Сопутствующие товары
КодНаименованиеКраткое описаниеРозн. цена
** более подробную информацию (фото, описание, маркировку, параметры, технические характеристики, и тд.) вы сможете найти перейдя по ссылке описания товара
9548UTC8N70L to-220fpТранзистор UTC8N70L (UTC8N70) — 700V, 8A, N-Channel, MOSFET, TO-220FP32 pyб.
1930TDA2030AМикросхемы TDA2030 (TDA2030A) — Power Amplifier, 18W, TO-220-515 pyб.
1447AO4407AТранзистор AO4407A (AO4407) — P-Channel MOSFET, 30V, 12A, SOP-811 pyб.
2336Фоторезистор LXD5516Фоторезистор LXD5516 (аналог GL5516) — CdS Photoconductive cells (CdS Photoresistor)3.2 pyб.
3162Жало паяльника 900M-T-3CСменные наконечники (жала) HAKKO 900M-T-3C серии 900M для использования в паяльных станциях типа HAKKO-936, и других видах паяльников, где нагревательный элемент находится внутри жала32 pyб.
1328TC-0104-X (6*6*7, vertical)Тактовая кнопка TC-0104-X (вертикальная, H=7мм)0.9 pyб.
8234LED-3528 (3V, 1W, LG)Светодиод LED-3528, (полный партномер LATWT470RELZK), белый9 pyб.
2742OB2263MP (OB2263) sot-23Микросхемы OB2263 (OB2263MP, маркировка 63***) — Current Mode PWM Controller Frequency, SOT-23-66.3 pyб.
10189Ручка переменного резистора (AG2, зеленая)Пластмассовая ручка для переменных резисторов Wh248, R097 и других, с диаметром вала 6 мм, зеленая3.2 pyб.
81922W10Диодный мост 2W10 — максимальный ток 2A, максимальное напряжение 1000V7 pyб.

 

dalincom.ru