Закон ома сопротивление – 1. Электрическое сопротивление. Закон Ома для участка электрической цепи

Закон Ома и сопротивление проводников

 

Поток электронов, движущихся от точки, имеющей отрицательный потенциал, к точке с положительным потенциалом, встречает на своем пути различного рода сопротивления. Сопротивлением обладает даже электрический проводник, не говоря уже о специальных элементах – резисторах, предназначенных для создания в электрических схемах требуемых величин сопротивлений. В местах соединения проводников также может возникать дополнительное сопротивление. Итак, следует запомнить, что любое сопротивление имеет свойство ограничивать электрический ток.

Значение силы тока, который протекает через резистор, зависит от его сопротивления и разности потенциалов между его выводами, рис 1.

 

Рис. 1. Резистор в цепи постоянного тока

Сила тока, протекающего через резистор R1, равна:

где

  I – сила тока, измеряющаяся в амперах [А];

  U – напряжение на резисторе, измеряющееся в вольтах [В];

  R – сопротивление резистора, измеряющееся в Омах [Ом];

Приведенная зависимость называется законом Ома для участка цепи. Это выражение было получено опытным путем еще в первой половине XIX века. Закон Ома для участка цепи формулируется  так: сила тока I, которые протекает на участке цепи, прямо пропорционален напряжению U, которое приложено к этому участку  цепи, и обратно пропорционален сопротивлению проводника R.

При прохождении  тока по проводнику свободные электроны, в процессе перемещения под воздействием электрического поля, на своем пути сталкиваются с атомами проводника и тормозятся, т.е. проводник создает сопротивление для свободного прохождения тока, это и называют сопротивлением провода.  Из закона Ома для участка цепи следует, что величина электрического сопротивления равна отношению падения напряжения на нем к величине тока, протекающего через этот резистор:

Сопротивление в 1 Ом имеет провод, по которому протекает ток с значением  1 А при напряжении 1 В. Зачастую при больших сопротивлениях применяются краткие единицы:  кОм=103 Ом и  1 МОм=106 Ом.

С другой стороны, если через резистор сопротивлением R протекает ток I, то на этом резисторе падает напряжение: U = I•R.

Обратная сопротивлению величина — проводимость:

 

Проводимость имеет размерность Сименс (См):

 [g] = 1/Ом = См.

 

Удельное сопротивление

 

Величина, обратная удельной проводимости — удельное сопротивление:

 

Выразим удельную проводимость через удельное сопротивление:

 

Из (5) видно, что значение сопротивления проводника зависит от его собственной длины l,  удельного сопротивления р (зависящее от материала и температуры провода) и площади поперечного сечения S.

Так как из выражения (5)

   

то удельное сопротивление равно сопротивлению R, в том случае если длина l и поперечное сечение S имеют единичные значения; иными словами, удельное сопротивление это сопротивление проводника единичного объема.

Из выражений (1) и (5) следует, что U=IR=Ipl/S. Единица удельного сопротивления в системе СИ:

 

В диэлектриках, обладающих огромным удельным сопротивлением, ток проходящий через толщу (объем) материала называют объемный ток IV, и он  эквивалентен току, который проходит по поверхности диэлектрика, то есть поверхностному току IS. В соответствии с этим возникает два понятия — объемное сопротивление и поверхностное сопротивление

Объемный ток в диэлектрике

 

Под удельным объемным сопротивлением понимают величину, равную сопротивлению диэлектрика, который имеет сечение S=1 см2  и длину  l= 1см. Единица объемного удельного сопротивления Ом×см, что следует из выражения

 

при этом 1 Ом×м — 100 Ом×см. Большинство диэлектриков обладает объёмным  удельным сопротивлением, которое лежит в пределах  10-10 – 10-20 Ом×см. Поверхностный ток равен

 

Под удельным поверхностным сопротивлением диэлектрика понимают величину, которая численно равна сопротивлению поверхности с шириной d=1 см и длиной l=1 см. Единица удельного поверхностного сопротивления — Ом, это следует из выражения

elekt.com.ua

Закон Ома

9.2Электрическое сопротивление

А сейчас давайте подумаем вот о чём. Пусть к концам проводника приложено постоянное напряжение U. Тогда на свободные заряды проводника действует сила со стороны стационарного электрического поля. Раз есть сила значит, эти заряды должны двигаться с ускорением; скорость их направленного движения будет увеличиваться, а вместе с ней будет возрастать и сила тока. Но закон Ома гласит, что сила тока будет постоянной. Как же так?

Дело в том, что сила со стороны стационарного поля не единственная сила, действующая на свободные заряды проводника.

Например, свободные электроны металла, совершая направленное движение, сталкиваются с ионами кристаллической решётки. Возникает своего рода сила сопротивления, действующая со стороны проводника на свободные заряды. Эта сила уравновешивает электрическую силу, с которой на свободные заряды действует стационарное поле. В результате скорость направленного движения заряженных частиц не меняется по модулю15; вместе с ней остаётся постоянной и сила тока.

Так что величина R названа сопротивлением не случайно. Она и в самом деле показывает, в какой степени проводник ¾сопротивляется¿ прохождению тока.

9.3Удельное сопротивление

Возьмём два проводника из одинакового материала с равными поперечными сечениями; пусть отличаются только их длины. Ясно, что сопротивление будет больше у того проводника, у которого больше длина. В самом деле, при большей длине проводника свободным зарядам труднее пройти сквозь него: каждый свободный электрон встретит на своём пути больше ионов кристаллической решётки. Аналогия такая: чем длиннее заполненная машинами улица, тем труднее будет через неё проехать.

Пусть теперь проводники отличаются только площадью поперечного сечения. Ясно, что чем больше площадь, тем меньше сопротивление проводника. Снова аналогия: чем шире шоссе, тем больше его пропускная способность, т. е. тем меньше его ¾сопротивление¿ движению машин.

Опыт подтверждает эти соображения и показывает, что сопротивление проводника прямо пропорционально его длине l и обратно пропорционально площади поперечного сечения S:

Коэффициент пропорциональности уже не зависит от геометрии проводника; он является характеристикой вещества проводника и называется удельным сопротивлением данного вещества. Величины удельных сопротивлений различных веществ можно найти в соответствующей таблице.

В каких единицах измеряется удельное сопротивление? Давайте выразим его из форму-

лы (47):

= RSl :

Получим:

[ ] = Ом м2 = Ом м:

м

Однако такая ¾теоретическая¿ единица измерения не всегда удобна. Она вынуждает при расчётах переводить площадь поперечного сечения в квадратные метры, тогда как на практике

15Точнее говоря, свободные электроны всё же двигаются равноускоренно, но только в промежутках между соударениями с ионами кристаллической решётки. В среднем же оказывается, что электроны перемещаются с постоянной скоростью.

studfiles.net

Закон Ома. Сопротивление и проводимость




⇐ ПредыдущаяСтр 2 из 8Следующая ⇒

 

Вспомните хорошо известные из школьного курса физики понятия.

Электрический ток (или сила тока) — количество заряда, проходящего через поперечное сечение проводника в единицу времени или производная заряда по времени i(t) = dq/dt.

Единица измерения тока – Ампер – А = Кл/с

Для цепей постоянного тока i(t) = const = I

Напряжение – разность электрических потенциалов между двумя точками цепи u(t) = φ1 — φ2.

В цепях постоянного тока u(t) = const = U.

Единица измерения напряжения – Вольт (В).

 

Одной из основных характеристик элемента цепи является зависимость тока от напряжения I = f (U), называемая вольт-амперная характеристика (ВАХ). Пример графиков двух ВАХ показан на рисунке 1.2.

ВАХ бывают линейные (если график – прямая линия) и нелинейные. На рисунке 1.2 характеристики 1 и 3 – линейные, а 2 – нелинейная. Соответственно, элементы цепи с линейной ВАХ называются линейными, а с нелинейной – нелинейными.

 

Линейная цепь — это цепь, состоящая только из линейных элементов. Если хотя бы один элемент цепи имеет нелинейную ВАХ, то цепь уже является нелинейной.

 

 

Важным параметром элемента цепи является его сопротивление R – коэффициент пропорциональности между током и напряжением.

 

В линейной цепи сопротивление элемента при любом напряжении постоянно и не зависит ни от напряжения, ни от тока. Зависимость тока от напряжения определяется законом Ома:

 

U = IR, где R = const.

 

Сопротивление R легко определить по графику ВАХ по любым двум точкам. R = ΔU/ΔI.

Определите: на какой из линейных ВАХ на рисунке 2 сопротивление больше: 1 или 3?

В нелинейной цепи сопротивление в каждой точке ВАХ различно. В данном разделе будем рассматривать только более простые, линейные цепи. Нелинейные цепи будут рассматриваться в последующих главах.

 

Сопротивление R является характеристикой провод-ника и определяется следующим образом:

R = , где l – длина проводника, ρ – удельное со-противление, характеризующее материал проводника, S – площадь поперечного сечения.


Теоретически любой элемент цепи обладает сопро-тивлением, но на практике в расчётах цепь идеализирует-ся, и сопротивлением проводов пренебрегают и считают, что всё сопротивление заключается в нагрузках.

Элемент цепи, обладающий сопротивлением, назы-вают резистором, на схеме обозначается так:

Размеры резистора – 4х10.

 

Часто удобно использовать величину, обратную сопротивлению, и называемую проводимость G.

 

G = 1/R

Единицей проводимости называется Сименс (См).

1 См = 1/1 Ом.

Закон Ома в этом случае выглядит: I = GU

G = , где γ = 1/ ρ – удельная проводимость.

Рассмотрим участок ветви с резистором R (смотреть рисунок 1.3) и полярности величин.

Очевидно, всегда R > 0

 

 

Uab = φa — φb

Если φa > φb то Uab > 0 – напряжение положительно.

Ток считается положительным, если направление тока совпадает с направлением положительного напряжения и отрицательным, если его направление противоположно направлению положительного напряжения.

 

Рассмотрим теперь источник ЭДС (рисунок 1.4)

 

 

Стрелка источника ЭДС показывает направление положительного тока, который вызывает источник. Интересно, что направление напряжения на самом источнике ЭДС противоположно току.

Рассмотрим участок ветви, содержащий источник ЭДС и резистор (рисунок 1.5).

 

 

Некоторые студенты испытывают затруднения при анализе данной цепи. При данном направлении ЭДС, правильная формула:

 

Uab = UR – E = IR – E

 

Проанализируйте схему и запишите самостоятельно формулы при различных вариантах направлений напряжений, токов и источника.

Соединение сопротивлений

 

Во многих случаях расчёт электрической цепи можно упростить, путём преобразования её из сложного вида в более простой. При этом уменьшается число узлов, ветвей либо и то и другое.

Необходимое условие преобразования: токи и напряжения в остальных частях схемы, не подвергающих-ся преобразованию, не изменяются. Такое преобразование называется эквивалентным.



 

а) Последовательное соединение сопротивлений

 

Последовательное соединение – это такое, при ко-тором во всех элементах цепи течёт одинаковый ток. Элементы ветви соединены последовательно (рис. 1.6).

Такую ветвь можно заменить одним резистором с сопротивлением Rэкв, равным сумме сопротивлений всех резисторов.

Rэкв = = R1+R2+R3+…+Rn

Эквивалентное сопротивление при таком соедине-нии всегда больше сопротивления любого из элементов. Если все сопротивления равны

R1= R2= R3=…= R, то Rэкв = nR

Для проводимостей G формула будет выглядеть так:

Напряжение на зажимах ab равно сумме напряжений на каждом элементе ветви.

б) Параллельное соединение сопротивлений

 

Параллельное соединение сопротивлений – это такое соединение, при котором ко всем элементам цепи приложено одинаковое напряжение.

Параллельно соединены элементы между двумя узлами (рисунок 1.7).

Ток I в неразветвлённой части равен сумме токов в каждом элементе.

I = I1= I2+ I3+…+ In

 

Эквивалентная проводимость в этом случае равна сумме проводимостей всех элементов:

Gэкв = = G1+ G2+ G3+…+ Gn

 

Для сопротивлений R формула будет выглядеть так:

Как видите, формулы симметричны: при последова-тельном соединении складываются сопротивления, а при параллельном – проводимости.

Эквивалентное сопротивление при таком соедине-нии всегда меньше сопротивления любого из элементов.

Если все сопротивления равны R1= R2= R3=…= R, то

Rэкв = R/n

 

Ток в любой ветви пропорционален проводимости этой ветви.

 

в) Смешанное соединение сопротивлений

 

Смешанное соединение сопротивлений – это такое соединение, которое можно представить в виде параллельного и последовательного.

На первый взгляд кажется, что любую схему соединения элементов можно представить в виде смешанного соединения и найти эквивалентное сопротивление путём преобразования параллельных и последовательных участков. Однако бывают случаи, когда соединение элементов не является смешанным. Примером такого случая может служить распространённая в электронике мостовая схема, показанная на рисунке 1.8.

 

Как найти сопротивление между точками a и d? После нескольких попыток упростить схему, легко убе-диться, что здесь нет участков ни с последовательным, ни с параллельным соединением. Для этого нужно приме-нить преобразование, описанное в следующем параграфе.

г) Преобразование «Звезда-треугольник»

 

Существует возможность эквивалентного преобра-зования треугольника сопротивлений, показанного на ри-сунке 1.9, в трёхлучевую звезду (рисунок 1.10).

 

При преобразовании одной схемы в другую, напря-жения и токи, как при любом эквивалентном преобразова-нии, не изменяются.

Формулы для преобразования из треугольника в звезду:

 

Формулы для преобразования из звезды в треугольник:

Rab = Ra+ Rb+ RaRb/Rс

Rac = Ra+ Rc+ RaRc/Rb

Rbc = Rc+ Rb+ RcRb/Ra

 

Если все сопротивления равны, то легко убедиться, что сопротивления в треугольнике в три раза больше, чем в звезде.

Теперь вернёмся к мостовой схеме на рисунке 8. Можно преобразовать в ней треугольник abc в звезду. Получим схему на рисунке 1.11.

В этой схеме сопротивления треугольника R1, R2, R3 преобразованы в звезду Ra, Rb, Rc.

 

 

Теперь не вызывает затруднения найти сопротивле-ние Rad. Для этого нужно найти последовательные соеди-нения Rb-R4 и Rc-R5, затем параллельное соединение двух получившихся и затем — последовательное соедине-ние с Ra.

Также и в других подобных случаях преобразование «звезда-треугольник» может быть незаменимым.

 



Рекомендуемые страницы:

lektsia.com

Закон Ома

В 1826 величайший немецкий физик Георг Симон Ом публикует свою работу «Определение закона, по которому металлы проводят контактное электричество», где дает формулировку знаменитому закону. Ученые того времени встретили враждебно публикации великого физика. И лишь после того, как другой ученый – Клод Пулье, пришел к тем же выводам опытным путем, закон Ома признали во всем мире.

Закон Ома – физическая закономерность, которая определяет взаимосвязь между током, напряжением и сопротивлением проводника. Он имеет две основные формы.

Закон Ома для участка цепи

Формулировка закона Ома для участка цепи – сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению.

Это простое выражение помогает на практике решать широчайший круг вопросов. Для лучшего запоминания решим задачу.

  Задача 1.1

Рассчитать силу тока, проходящую по медному проводу длиной 100 м, площадью поперечного сечения 0,5 мм2, если к концам провода приложено напряжение 12 B.

Задача простая, заключается в нахождении сопротивления медной проволоки с последующим расчетом силы тока по формуле закона Ома для участка цепи. Приступим.

Закон Ома для полной цепи

Формулировка закона Ома для полной цепи — сила тока прямо пропорциональна сумме ЭДС цепи, и обратно пропорциональна сумме сопротивлений источника и цепи , где E – ЭДС, R- сопротивление цепи, r – внутреннее сопротивление источника.

Здесь могут возникнуть вопросы. Например, что такое ЭДС? Электродвижущая сила — это физическая величина, которая характеризует работу внешних сил в источнике ЭДС. К примеру, в обычной пальчиковой батарейке, ЭДС является химическая реакция, которая заставляет перемещаться заряды от одного полюса к другому. Само слово электродвижущая говорит о том, что эта сила двигает электричество, то есть заряд.

В каждом источнике присутствует внутреннее сопротивление r, оно зависит от параметров самого источника. В цепи также существует сопротивление R, оно зависит от параметров самой цепи.

Формулу закона Ома для полной цепи можно представить в другом виде. А именно: ЭДС источника цепи равна сумме падений напряжения на источнике и на внешней цепи.

Для закрепления материала, решим две задачи на формулу закона Ома для полной цепи.

  Задача 2.1

Найти силу тока в цепи, если известно что сопротивление цепи 11 Ом, а источник подключенный к ней имеет ЭДС 12 В и внутреннее сопротивление 1 Ом.

 

Теперь решим задачу посложнее.

  Задача 2.2

Источник ЭДС подключен к резистору сопротивлением 10 Ом с помощью медного провода длиной 1 м и площадью поперечного сечения 1 мм2. Найти силу тока, зная что ЭДС источника равно 12 В, а внутреннее сопротивление 1,9825 Ом.

Приступим.

Мнемоническая диаграмма

Для лучшего запоминания закона Ома существует мнемоническая диаграмма, благодаря которой можно всегда напомнить себе формулу. Пользоваться этой диаграммой очень просто. Достаточно закрыть искомую величину и две другие укажут, как её найти. Потренируйтесь, это может вам пригодится.

Успехов в изучении электричества! Рекомендуем прочесть статью — законы Кирхгофа.

  • Просмотров: 1483
  • electroandi.ru

    1. Электрическое сопротивление. Закон Ома для участка электрической цепи

    Соберём электрическую цепь, состоящую из источника тока (который позволяет плавно менять напряжение), амперметра, спирали из никелиновой проволоки (проводника), ключа и параллельно присоединённого к спирали вольтметра (схема этой цепи показана рядом, прямоугольником условно обозначен проводник).

     

     

    Замкнём цепь и отметим показания приборов. Затем при помощи источника тока плавно изменим напряжение (лучше всего увеличить его вдвое). Напряжение на спирали при этом тоже увеличится вдвое, и амперметр покажет вдвое большую силу тока. Увеличивая напряжение в \(3\) раза, напряжение на спирали увеличивается втрое, во столько же раз увеличивается сила тока.
    Таким образом, опыт показывает, что во сколько раз увеличивается напряжение, приложенное к одному и тому же проводнику, во столько же раз увеличивается сила тока в нём. Другими словами:

     

    Обрати внимание!

    Сила тока в проводнике прямо пропорциональна напряжению на концах проводника.

    Эту зависимость можно изобразить графически. Её называют зависимостью силы тока в проводнике от напряжения между концами этого проводника.

     

     

    Включая в электрическую цепь источника тока различные проводники и амперметр, можно заметить, что при разных проводниках показания амперметра различны, т.е. сила тока в данной цепи различна.

     

     

    Графики тоже будут отличаться.

     

     

    Вольтметр, поочерёдно подключаемый к концам этих проводников, показывает одинаковое напряжение. Значит, сила тока в цепи зависит не только от напряжения, но и от свойств проводников, включённых в цепь. Зависимость силы тока от свойств проводника объясняется тем, что разные проводники обладают различным электрическим сопротивлением.

     

    Обрати внимание!

    Электрическое сопротивление — физическая величина. Обозначается оно буквой R.

    За единицу сопротивления принимают \(1\) ом — сопротивление такого проводника, в котором при напряжении на концах \(1\)вольт сила тока равна \(1\) амперу.

    Кратко это записывают так: 1 Ом =1 В1 А.Применяют и другие единицы сопротивления: миллиом (мОм), килоом (кОм), мегаом (МОм).

     

    \(1\) мОм = \(0,001\) Ом;

    \(1\) кОм = \(1000\) Ом;

    \(1\) МОм = \(1 000 000\) Ом.

     

    Причина сопротивления заключается в следующем: электроны взаимодействуют с ионами кристаллической решётки металла. При этом замедляется упорядоченное движение электронов, и сквозь поперечное сечение проводника проходит за \(1\) с меньшее их число. Соответственно, уменьшается и переносимый электронами за \(1\) с заряд, т.е. уменьшается сила тока. Таким образом, каждый проводник как бы противодействует электрическому току, оказывает ему сопротивление. Итак:

     

    Обрати внимание!

    Причиной сопротивления является взаимодействие движущихся электронов с ионами кристаллической решётки.

    Чтобы ответить на вопрос, как зависит сила тока в цепи от сопротивления, обратимся к опыту.

     

     

    На рисунке изображена электрическая цепь, источником тока в которой является аккумулятор. В эту цепь по очереди включают проводники, обладающие различным сопротивлением. Напряжение на концах проводника во время опыта поддерживается постоянным. За этим следят по показаниям вольтметра. Силу тока в цепи измеряют амперметром. Ниже приведены результаты опытов с тремя различными проводниками.

     

    Напряжение на концах проводника, ВСопротивление проводника, ОмСила тока в цепи, А

    \(2\)

    \(1\)

    \(2\)

    \(2\)

    \(2\)

    \(1\)

    \(2\)

    \(4\)

    \(0,5\)

    Обобщая результаты опытов, приходим к выводу, что:

     

    Обрати внимание!

    Сила тока в проводнике обратно пропорциональна сопротивлению проводника.

    Зависимость силы тока от напряжения на концах участка цепи и сопротивления этого участка называется законом Ома — по имени немецкого учёного Георга Ома, открывшего этот закон в \(1827\) году.
    Закон Ома читается так:

    Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

    И записывается так:

     

    I=UR,

     

    где \(I\) — сила тока в участке цепи, \(U\) — напряжение на этом участке, \(R\) — сопротивление участка.

    Зависимость силы тока от сопротивления проводника при одном и том же напряжении на его концах может быть показана графически:

     

     

     

    Найти сопротивление экспериментально можно несколькими способами:

     

     

    Где  — обозначение омметра в цепи (или мультиметра в режиме измерения сопротивления).

    Источники:

    Пёрышкин А.В. Физика, 8 класс// ДРОФА, 2013.

    http://xn--h2adlho.xn--g1ababalj7azb.xn--p1ai/375/
    http://radiolove.ucoz.com/index/ne_znaesh_zakona_oma_sidi_doma/0-8

    www.yaklass.ru

    Закон Ома | Онлайн журнал электрика

    Диаграмма – Закон Ома.

    На рис. показана схема знакомой вам простейшей электронной цепи. Эта замкнутая цепь состоит из 3-х частей: источника напряжения – батареи GB, потребителя тока – нагрузки R, которой может быть, к примеру, нить накала электронной лампы либо резистор, и проводников, соединяющих источник напряжения с нагрузкой. Меж иным, если эту цепь дополнить выключателем, то получится полная схема карманного электронного фонаря.
    Меж иным, если эту цепь дополнить выключателем, то получится полная схема карманного электронного фонаря.

    Простая электронная цепь неизменного тока.

    Нагрузка R, владеющая определенным сопротивлением, является участком цепи. Значение тока на этом участке цепи находится в зависимости от действующего на нем напряжения и его сопротивления: чем больше напряжение и меньше сопротивление, тем огромным ток будет идти по участку цепи. Эта зависимость тока от напряжения и сопротивления выражается последующей формулой: 
    I = U/R,
    где I – ток, выраженный в амперах, А; U – напряжение в вольтах, В; R – сопротивление в омах, Ом. Читается это математическое выражение так: ток на участке цепи прямо пропорционален напряжению на нем и назад пропорционален его сопротивлению. Это основной закон электротехники, называемый законом Ома (по фамилии Г. Ома), для участка электронной цепи
    . Используя закон Ома, можно по двум известным электронным величинам выяснить неведомую третью. Вот несколько примеров практического внедрения закона Ома.

    1-ый пример: На участке цепи, владеющем сопротивлением 5 Ом, действует напряжение 25 В. Нужно выяснить значение тока на этом участке цепи.
    Решение: I = U/R = 25 / 5 = 5 А.
    2-ой пример: На участке цепи действует напряжение 12 В, создавая в нем ток, равный 20 мА. Каково сопротивление этого участка цепи? Сначала ток 20 мА необходимо выразить в амперах. Это будет 0,02 А. Тогда R = 12 / 0,02 = 600 Ом.

    3-ий пример: Через участок цепи сопротивлением 10 кОм течет ток 20 мА. Каково напряжение, действующее на этом участке цепи? Тут, как и в прошлом примере, ток должен быть выражен в амперах (20 мА = 0,02 А), сопротивление в омах (10кОм = 10000Ом). Как следует, U = IR = 0,02 х 10000 = 200 В. На цоколе лампы накаливания плоского карманного фонаря выштамповано: 0,28 А и 3,5 В. О чем молвят эти сведения? О том, что лампочка будет нормально сиять при токе 0,28 А, который обусловливается напряжением 3,5 В, Пользуясь законом Ома, несложно подсчитать, что накаленная нить лампочки имеет сопротивление R = 3,5 / 0,28 = 12,5 Ом. Это, подчеркиваю, сопротивление накаленной нити лампочки. А сопротивление остывшей нити существенно меньше. Закон Ома справедлив не только лишь для участка, да и для всей электронной цепи. В данном случае в значение R подставляется суммарное сопротивление всех частей цепи, в том числе и внутреннее сопротивление источника тока. Но при простых расчетах цепей обычно третируют сопротивлением соединительных проводников и внутренним сопротивлением источника тока.

    В связи с этим приведу очередной пример: Напряжение электроосветительной сети 220 В. Какой ток потечет в цепи, если сопротивление нагрузки равно 1000Ом? Решение: I = U/R = 220 / 1000 = 0,22 А. Приблизительно таковой ток потребляет электронный паяльничек.

    Всеми этими формулами, вытекающими из закона Ома, можно воспользоваться и для расчета цепей переменного тока, но при условии, если в цепях нет катушек индуктивности и конденсаторов.

    Закон Ома и производные от него расчетные формулы, довольно просто уяснить, если воспользоваться вот этой графической схемой, т. н. треугольник закона Ома:

    Воспользоваться этим треугольником просто, довольно верно уяснить, что горизонтальная линия в треугольнике значит символ деления (по аналогии дробной черты), а вертикальная линия в треугольнике значит символ умножения.

    Сейчас разглядим таковой вопрос: как оказывает влияние на ток резистор, включаемый в цепь поочередно с нагрузкой либо параллельно ей? Разберем таковой пример. У нас имеется лампочка от круглого электронного, фонаря, рассчитанная на напряжение 2,5 В и ток 0,075 А. Можно ли питать эту лампочку от батареи 3336Л, изначальное напряжение которой 4,5 В? Несложно подсчитать, что накаленная нить этой лампочки имеет сопротивление немногим больше 30 Ом. Если же питать ее от свежайшей батареи 3336Л, то через нить накала лампочки, по закону Ома, пойдет ток, практически в два раза превосходящий тот ток, на который она рассчитана. Таковой перегрузки нить не выдержит, она перекалится и разрушится. Но эту лампочку все таки можно питать от батареи 336Л, если поочередно в цепь включить дополнительный резистор сопротивлением 25 Ом, как это показано на рис..

    Дополнительный резистор, включенный в цепь, ограничивает ток в этой цепи.

    В данном случае общее сопротивление наружной цепи будет равно приблизительно 55 Ом, т.е. 30 Ом – сопротивление нити лампочки Н плюс 25 Ом – сопротивление дополнительного резистора R. В цепи, как следует, потечет ток, равный приблизительно 0,08 А, т.е. практически таковой же, на который рассчитана нить накала лампочки. Эту лампочку можно питать от батареи и с более высочайшим напряжением и даже от электроосветительной сети, если подобрать резистор соответственного сопротивления. В этом примере дополнительный резистор ограничивает ток в цепи до подходящего нам значения. Чем больше будет его сопротивление, тем меньше будет и ток в цепи. В этом случае в цепь было включено поочередно два сопротивления: сопротивление нити лампочки и сопротивление резистора. А при поочередном соединении сопротивлений ток схож во всех точках цепи. Можно включать амперметр в всякую точку цепи, и везде он будет демонстрировать одно значение. Это явление можно сопоставить с потоком воды в реке. Русло реки на разных участках может быть широким либо узеньким, глубочайшим либо маленьким. Но за определенный просвет времени через поперечное сечение хоть какого участка русла реки всегда проходит однообразное количество воды.

    Дополнительный резистор, включаемый в цепь поочередно с нагрузкой (как, к примеру, на рис. выше), можно рассматривать как резистор, «гасящий» часть напряжения, действующего в цепи. Напряжение, которое гасится дополнительным резистором либо, как молвят, падает на нем, будет тем огромным, чем больше сопротивление этого резистора. Зная ток и сопротивление дополнительного резистора, падение напряжения на нем просто подсчитать все по той же знакомой вам формуле U = IR, Тут U – падение напряжения, В; I – ток в цепи, A; R – сопротивление дополнительного резистора, Ом. Применительно к нашему примеру резистор R ( на рис.) погасил излишек напряжения: U = IR = 0,08 х 25 = 2 В. Остальное напряжение батареи, равное примерно 2,5 В, свалилось на нити лампочки. Нужное сопротивление резистора можно отыскать по другой знакомой вам формуле R = U/I, где R – разыскиваемое сопротивление дополнительного резистора, Ом; U-напряжение, которое нужно погасить, В; I – ток в цепи, А. Для нашего примера сопротивление дополнительного резистора равно: R = U/I = 2/0,075, 27 Ом. Изменяя сопротивление, можно уменьшать либо наращивать напряжение, которое падает на дополнительном резисторе, и таким макаром регулировать ток в цепи. Но дополнительный резистор R в таковой цепи может быть переменным, т.е. резистором, сопротивление которого можно изменять (см. рис. ниже).

    Регулирование тока в цепи при помощи переменного резистора.

    В данном случае при помощи движка резистора можно плавненько изменять напряжение, подводимое к нагрузке Н, а означает, плавненько регулировать ток, протекающий через эту нагрузку. Включенный таким макаром переменный резистор именуют реостатом, При помощи реостатов регулируют токи в цепях приемников, телевизоров и усилителей. В почти всех кинозалах реостаты использовали для плавного гашения света в зрительном зале. Есть, но, и другой метод подключения нагрузки к источнику тока с лишним напряжением – тоже при помощи переменного резистора, но включенного потенциометром, т.е. делителем напряжения, как показано на рис..

    Регулирование напряжения на нагрузке R2 при помощи переменного резистора включенного в электронную цепь потенциометром.

    Тут R1 – резистор, включенный потенциометром, a R2 – нагрузка, которой может быть та же лампочка накаливания либо какой – то другой прибор. На резисторе R1 происходит падение напряжения источника тока, которое отчасти либо стопроцентно может быть подано к нагрузке R2. Когда движок резистора находится в последнем нижнем положении, к нагрузке напряжение вообщем не подается (если это лампочка, она пылать не будет). По мере перемещения движка резистора ввысь мы будем подавать все большее напряжение к нагрузке R2 (если это лампочка, ее нить будет накаливаться). Когда же движок резистора R1 окажется в последнем верхнем положении, к нагрузке R2 будет подано все напряжение источника тока (если R2 – лампочка карманного фонаря, а напряжение источника тока огромное, нить лампочки перегорит). Можно опытным методом отыскать такое положение движка переменного резистора, при котором к нагрузке будет подано нужное ей напряжение. Переменные резисторы, включаемые потенциометрами, обширно употребляют для регулирования громкости в приемниках и усилителях. Резистор может быть конкретно подключен параллельно нагрузке. В таком случае ток на этом участке цепи разветвляется и идет 2-мя параллельными способами: через дополнительный резистор и основную нагрузку. Больший ток будет в ветки с минимальным сопротивлением. Сумма же токов обеих веток будет равна току, используемому на питание наружной цепи. К параллельному соединению прибегают в тех cлучаях, когда нужно ограничить ток не во всей цепи, как при поочередном включении дополнительного резистора, а лишь на каком – то участке. Дополнительные резисторы подключают, к примеру, параллельно миллиамперметрам, чтоб ими можно было определять огромные токи. Такие резисторы называют шунтирующими или шунтами. Слово шунт означает ответвление.

    elektrica.info

    Закон Ома. Сопротивление проводников




     

    Немецкий физик Г. Ом (1787,—1854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. с. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению Uна концах проводника:

     

    I=U/R, (98.1)

     

    где R — электрическое сопротивление проводника. Уравнение (98.1) выражает закон Ома для участка цепи (не содержащего источника тока): сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника. Формула (98.1) позволяет установить единицу сопротивления — ом (Ом): 1 Ом — сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А. Величина

    называется электрической проводимостью проводника. Единица проводимости — сименс (См): 1 См — проводимость участка электрической цепи сопротивлением 1 Ом. Сопротивление проводников зависит от его размеров и формы, а также от материала, из которого проводник изготовлен. Для однородного линейного проводника сопротивление Rпрямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S:

    (98.2)

    где r— коэффициент пропорциональности, характеризующий материал проводника и называемый удельным электрическим сопротивлением. Единица удельного электрического сопротивления — ом-метр (Ом×м). Наименьшим удельным сопротивлением обладают серебро (1,6-10~8 Ом м) и медь (1,7×10-8 Ом×м). На практике наряду с медными применяются алюминиевые провода. Хотя алюминий и имеет большее, чем медь, удельное сопротивление (2,6×10-8 Ом×м), но зато обладает меньшей плотностью по сравнению с медью.

    Закон Ома можно представить в дифференциальной форме. Подставив выражение для сопротивления (98.2) в закон Ома (98.1), получим

    (98.3)

    где величина, обратная удельному сопротивлению,

    называется удельной электрической проводимостью вещества проводника. Ее единица — сименс на метр (См/м). Учитывая, что U/l = E— напряженность электрического поля в проводнике, I/S = j— плотность тока, формулу (98.3) можно записать в виде



    (98.4)

    Так как в изотропном проводнике носители тока в каждой точке движутся в направлении вектора Е, то направления j и Е совпадают. Поэтому формулу (98.4) можно записать в виде

    (98.5)

    Выражение (98.5) — закон Ома в дифференциальной форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.

    Опыт показывает, что в первом приближении изменение удельного сопротивления, а значит и сопротивления, с температурой описывается линейным законом:

    где rи r0, R и R0— соответственно удельные сопротивления и сопротивления проводника при t и 0 °С, a — температурный коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К-1. Следовательно, температурная зависимость сопротивления может быть представлена в виде

    где Т— термодинамическая температура.

    Качественный ход температурной зависимости сопротивления металла представлен на рис. 147 (кривая 1). Впоследствии было обнаружено, что сопротивление многих металлов (например, Al, Pb, Zn и др.) и их сплавов при очень низких температурах Тk(0,14—20 К), называемых критическими, характерных для каждого вещества, скачкообразно уменьшается до нуля (кривая 2), т. е. металл становится абсолютным проводником. Впервые это явление, названное сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов (в обмотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за их низких критических температур. В настоящее время обнаружены и активно исследуются керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К.

     

    Рис. 147

     

    На зависимости электрического сопротивления металлов от температуры основано действие термометров сопротивления, которые позволяют по градуированной взаимосвязи сопротивления от температуры измерять температуру с точностью до 0,003 К. Термометры сопротивления, в которых в качестве рабочего вещества используются полупроводники, изготовленные по специальной технологии, называются термнсторами. Они позволяют измерять температуры с точностью до миллионных долей кельвин.




     

    Работа и мощность тока.


    Закон Джоуля — Ленца

     

    Рассмотрим однородный проводник, к концам которого приложено напряжение U. За время dt через сечение проводника переносится заряд dq = Idt. Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по формуле (84.6), работа тока

    (99.1)

    Если сопротивление проводника R, то, используя закон Ома (98.1), получим

    (99.2)

    Из (99.1) и (99.2) следует, что мощность тока

    (99.3)

    Если сила тока выражается в амперах, напряжение — в вольтах, сопротивление — в омах, то работа тока выражается в джоулях, а мощность — в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Вт-ч) и киловатт-час (кВт-ч). 1 Вт×ч — работа тока мощностью 1 Вт в течение 1 ч; 1 Вт-ч = 3600 Вт-с = 3,6-103 Дж; 1 кВт-ч=103 Вт-ч=3,6-106 Дж.

    Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,

    (99.4)

    Таким образом, используя выражения (99.4), (99.1) и (99.2), получим

    (99.5)

    Выражение (99.5) представляет собой закон Джоуля — Ленца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем[1].

    Выделим в проводнике элементарный цилиндрический объем dV = dSdl(ось цилиндра совпадает с направлением тока), сопротивление которого . По закону Джоуля — Ленца, за время Dtв этом объеме выделится теплота

    Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока. Она равна

    (99.6)

    Используя дифференциальную форму закона Ома (j = gE)и соотношение r = 1/g, получим

    (99.7)

    Формулы (99.6) и (99.7) являются обобщенным выражением закона Джоуля — Ленца в дифференциальной форме, пригодным для любого проводника.

    Тепловое действие тока находит широкое применение в технике, которое началось с открытия в 1873 г. русским инженером А. Н. Лодыгиным (1847—1923) лампы накаливания. На нагревании проводников электрическим током основано действие электрических муфельных печей, электрической дуги (открыта русским инженером В. В. Петровым (1761—1834)), контактной электросварки, бытовых электронагревательных приборов и т. д.

     









    

    infopedia.su