Закон ома в картинках – Разъясняем закон Ома буквально на пальцах и картинках

Разъясняем закон Ома буквально на пальцах и картинках

Всем, кто забыл, а по сути никогда и не понимал его, посвящается. Закон Ома — один из самых важных и часто используемых на практике, в электронике, в частности.

Вспоминаем формулировку закона Ома: сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку, и обратно пропорциональна сопротивлению.

Теперь разберем эту, не самую, на первый взгляд простую, формулировку.

Первое понятие: сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку.
Это понять довольно несложно: прямая зависимость: чем выше прикладываем напряжение, тем большую получаем величину тока! Выше напряжение — сильнее ток!

Второе понятие: и обратно пропорциональна сопротивлению.
Тут тоже довольно понятно: чем выше сопротивление, тем ниже сила тока.

Формула закона Ома

Легко и быстро находить нужные вам значения по этой формуле помогают такие вот подсказки, основанные на «магическом треугольнике».

А теперь — веселые картинки

Чтобы еще легче было понять, давайте рассмотрим его на знакомом примере из жизни — с водопроводной водой.
«Сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку».
Вода — это ток. Течение — сила тока, давление воды — это напряжение, а труба — это проводник. Ясно, что чем выше мы поднимем бачок, тем выше станет давление воды (напряжение) и тем сильнее станет течение воды (сила тока). Опусти мы бачок — уменьшится давление (напряжение) и соответственно, ниже станет течение (сила тока).
Прямая зависимость. Чем выше напряжение, тем сильнее сила тока, очень наглядно.

Теперь проверим на жизненных реалиях вторую часть формулировки закона Ома, добавим в нашу водопроводную схему понятие сопротивления. То есть нарисуем в трубе с водой заслонку.
«Сила тока на участке цепи обратно пропорциональна сопротивлению.»
Если опускать в трубе заслонку (повышая сопротивление), она будет мешать току воды, соответственно, сила течения (сила тока) снижается. И наоборот, при поднятии заслонки (снижая сопротивление) мы видим увеличение силы тока.
Чем выше сопротивление — тем меньше сила тока, чем ниже сопротивление, тем выше сила тока. Логично.

Источник: fishki.net

Источник: http://fishki.net/2315059-razjasnjaem-zakon-oma-bukvalyno-na-palycah-i-kartinkah.html?mode=recent © Fishki.net

Понравился наш сайт? Присоединяйтесь или подпишитесь (на почту будут приходить уведомления о новых темах) на наш канал в МирТесен!

menstois.ru

Закон Ома для участка цепи

Здравствуйте, уважаемые читатели сайта «Заметки электрика»..

Сегодня открываю новый раздел на сайте под названием электротехника.

В этом разделе я постараюсь в наглядной и простой форме объяснить Вам вопросы электротехники. Скажу сразу, что далеко  углубляться в теоретические знания мы не будем, но вот с основами познакомимся в достаточном порядке.

Первое, с чем я хочу Вас познакомить, это с законом Ома для участка цепи. Это самый основной закон, который должен знать каждый электрик.

Знание этого закона позволит нам беспрепятственно и безошибочно определять значения силы тока, напряжения (разности потенциалов) и сопротивления на участке цепи.

Кто такой Ом? Немного истории

Закон Ома открыл всем известный немецкий физик Георг Симон Ом в 1826 году. Вот так он выглядел.

Всю биографию Георга Ома я рассказывать Вам не буду. Про это Вы можете узнать на других ресурсах более подробно.

Скажу только самое главное.

Его именем назван самый основной закон электротехники, который мы активно применяем в сложных расчетах при проектировании, на производстве и в быту.

Закон Ома для однородного участка цепи выглядит следующим образом:

I – значение тока, идущего через участок цепи (измеряется в амперах)

U – значение напряжения на участке цепи (измеряется в вольтах)

R – значение сопротивления участка цепи (измеряется в Омах)

Если формулу объяснить словами, то получится, что сила тока пропорциональная напряжению и обратно пропорциональна сопротивлению участка цепи.

Проведем эксперимент

Чтобы понять формулу не на словах, а на деле, необходимо собрать следующую схему:

Цель этой статьи — это показать наглядно, как использовать закон Ома для участка цепи. Поэтому я на своем рабочем стенде собрал эту схему. Смотрите ниже как она выглядит.

Сопротивление в цепи я заменил светодиодной лампочкой, обладающей определенной величиной сопротивления. Все соединения производим с помощью соединительных проводов марки ПВ-1.  Кто не знает как это сделать, то читайте мою статью как правильно соединять провода.

С помощью ключа управления (избирания) можно выбрать, либо постоянное напряжение, либо переменное напряжение на выходе. В нашем случае используется постоянное напряжения. Уровень напряжения я меняю с помощью лабораторного автотрансформатора (ЛАТР).

В нашем эксперименте я буду использовать напряжение на участке цепи, равное 220 (В). Контроль напряжения на выходе смотрим по вольтметру.

Теперь мы полностью готовы провести самостоятельно эксперимент и проверить закон Ома в действительности.

Ниже я приведу 3 примера. В каждом примере мы будем определять искомую величину 2 методами: с помощью формулы и практическим путем.

Пример № 1

В первом примере нам нужно найти ток (I) в цепи, зная величину источника постоянного напряжения и величину сопротивления светодиодной лампочки.

Напряжение источника постоянного напряжения составляет U = 220 (В). Сопротивление светодиодной лампочки равно R = 40740 (Ом).

С помощью формулы найдем ток в цепи:

 I = U/R  = 220 / 40740 = 0,0054 (А)

А теперь проверим полученный результат практическим путем. 

Подключаем последовательно светодиодной лампочке мультиметр, включенный в режиме амперметр, и замеряем ток в цепи.

На дисплее мультиметра показан ток цепи. Его значение равно 5,4 (мА) или 0,0054 (А), что соответствует току, найденному по формуле.

Пример № 2

Во втором примере нам нужно найти напряжение (U) участка цепи, зная величину тока в цепи и величину сопротивления светодиодной лампочки.

I = 0,0054 (А)

R = 40740 (Ом)

С помощью формулы найдем напряжение участка цепи:

U = I*R  = 0,0054 *40740 = 219,9 (В) = 220 (В)

А теперь проверим полученный результат практическим путем. 

Подключаем параллельно светодиодной лампочке мультиметр, включенный в режиме вольтметр, и замеряем напряжение.

На дисплее мультиметра показана величина измеренного напряжения. Его значение равно 220 (В), что соответствует напряжению, найденному по формуле закона Ома для участка цепи.

Пример № 3

В третьем примере нам нужно найти сопротивление (R) участка цепи, зная величину тока в цепи и величину напряжения участка цепи.

I = 0,0054 (А)

U = 220 (В)

Опять таки, воспользуемся формулой и найдем сопротивление участка цепи:

R = U/I = 220/0,0054 = 40740,7 (Ом)

А теперь проверим полученный результат практическим путем.

Сопротивление светодиодной лампочки мы измеряем с помощью электроизмерительных клещей или мультиметра.

Полученное значение составило R = 40740 (Ом), что соответствует сопротивлению, найденному по формуле.

Как легко запомнить Закон Ома для участка цепи!!!

Чтобы не путаться и легко запомнить формулу, можно воспользоваться небольшой подсказкой, которую Вы можете сделать самостоятельно.

Нарисуйте треугольник и впишите в него параметры электрической цепи, согласно рисунка ниже. У Вас должно получится вот так.

Как этим пользоваться?

Пользоваться треугольником-подсказкой очень легко и просто. Закрываете своим пальцем, тот параметр цепи, который необходимо найти.

Если оставшиеся на треугольнике параметры расположены на одном уровне, то значит их необходимо перемножить.

Если же оставшиеся на треугольнике параметры расположены на разном уровне, то тогда необходимо разделить верхний параметр на нижний.

С помощью треугольника-подсказки Вы не будете путаться в формуле. Но лучше все таки ее выучить, как таблицу умножения.

Выводы

В завершении статьи сделаю вывод.

Электрический ток — это направленный поток электронов от точки В с потенциалом минус к точке А с потенциалом плюс. И чем выше разность потенциалов между этими точками, тем больше электронов переместится из точки В в точку А, т.е. ток в цепи увеличится, при условии, что сопротивление цепи останется неизменным.

Но сопротивление лампочки противодействует протеканию электрического тока. И чем больше сопротивление в цепи (последовательное соединение нескольких лампочек), тем меньше будет ток в цепи, при неизменном напряжении сети.

P.S. Тут в интернете нашел смешную, но поясняющую карикатуру на тему закона Ома для участка цепи. 

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Закон Ома? Не, неслышал (в комментах самое интересное) — DRIVE2

Очень часто сталкиваюсь с тем, что люди не понимают закон Ома. Ток прямо пропорционален напряжению и обратно пропорционален сопротивлению — многие ещё в школе изучили этот стишок совсем неосмысляя его. У меня в личке коллекция таких нелепых вопросов на эту тему.
Поэтому для начинающих электриков есть такая картинка:

Еще можно сравнить электричество с рекой:

Напряжение — это скорость потока воды. Она зависит от уровня истока в начале русла и уровнем воды в то место, куда река впадает. Чем выше разность уровней, тем скорость потока выше. В электричестве это называется разностью потенциалов. В трубопроводе это можно сравнить с давлением.

Ток — это ширина реки. тут все ясно. Не путать со потоком воды и с объемом воды! Так же можно сравнить с диаметром трубопровода.

Сопротивление — это любое сопротивление по ходу русла реки: камушек, сужение, дамба и т.п.
например перекрытая река плотиной, дамбой или бобром имеет бесконечное сопротивление (вернее очень большое), река перекрыта — вода стоит, течения реки нет, то есть тока. При этом перепад воды есть. В реальности конечно река будет переть и в итоге перед плотиной появится водохранилище, но у нас же не явно прямое сравнение, а образное, поэтому будем считать, что вода просто останавливается. Ну например как в том же трубопроводе, когда вентиль перекрыл поток воды. Давление в трубопроводе есть (это напряжение) а вода недвижется (ток)

Мощность — это если скорость потока воды помножить на ширину реки, или диаметр трубы. То есть объем воды, проходящий через условный разрез.

Бывает такое, что у горной реки с бешеным потоком и равнинной широкой реки с еле заметным течением одинаковая мощность(объем проходящей воды). Или например капает капля с пипетки и с магистрального трубопровода падает капля. Скорость потока разная, а мощность (объем воды) одинаковый.

Если у реки есть препятствия, замедляющее течение воды, то на этом месте выделяется мощность.

Достаточно часто в электричестве преобразуют соотношение напряжения и тока. Например трансформаторами для переменного тока или ШИМ- преобразователями для постоянного. Это можно сравнить с ГЭС: перед падением скорость потока низкая ширина реки широкая, после ГЭС скорость потока высокая, ширина узкая. При этом сама ГЭС имеет сопротивление току воды и на ней выделяется мощность. При этом в электричестве это вредное бесполезное выделения тепла, а ГЭС для этого и строят, чтоб мощность отбирать.

И таких примеров сравнения можно привести много. Например электрическая емкость — конденсатор это закрытая емкость воды связанная протоком с рекой, например затон. Если в реке будет меняться уровень, то в затоне будет двигаться вода. Диод — это обратный клапан в трубопроводе: в одну сторону вода может протекать, а обратно — нет. Светодиод — это водопад. При этом красиво и люди смотрят как вода падает. Ведет себя как диод, если повернуть реку вспять то водопада небудет. При падении воды выделяется мощность — это свет и так далее…

www.drive2.ru

Введение в электронику. Закон Ома

Серия статей известного автора множества радиолюбительских публикаций  Дригалкина В.В.  для начинающих радиолюбителей

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

Закон Ома

В школе Вы, несомненно, проходили, а, если еще нет – обязательно будете изучать Закон Ома. Он определяет соотношение между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома.

Суть закона следующая: порождаемый напряжением ток обратно пропорционален сопротивлению, которое ему приходится преодолевать, и прямо пропорционален порождающему напряжению.

Именно такое определение содержит учебник по физике. Я же попробую объяснить этот процесс на примере с водопроводной трубой. Припоминаете, что такая же аналогия использовалась, когда мы говорили о токе? Представьте себе, что вода – некое подобие электрического тока, образуемого направленным движением электронов в проводнике, а напряжение – аналог давления (напора) воды. Сопротивление – это та сила противодействия среды их движению, которую приходится преодолевать электронам (воде), в результате выделяется теплота. Именно такая модель представлялась Георгу Ому в 1820-е годы, когда он занялся исследованием природы происходящего в электрических цепях. Чем выше давление воды в трубе, тем относительно большая доля энергии расходуется на преодоление сопротивления, поскольку в трубах усиливается турбулентность потока. Из этого исходил Ом, приступая к опытам по измерению зависимости силы тока от напряжения. Очень скоро выяснилось, что ничего подобного в электрических проводниках не происходит: сопротивление вещества электрическому току вовсе не зависит от приложенного напряжения. В этом, по сути, и заключается закон Ома, который (для отдельного участка цепи) записывается так:
I = V/R,
В этой формуле I – сила тока, V – напряжение, приложенное к участку цепи, а R – электрическое сопротивление участка цепи  (см. Рис. 1).

На этой схеме V иногда называют электродвижущей силой (ЭДС) , которая создает ток I. Этот ток, протекая по сопротивлениям, создает на них падения напряжения. Так если сопротивлений два, то XJ1 + U2 = ЭДС. Причем XJ1 = IRx, U2 = IR2. В реальных условиях эта схема содержит целых три сопротивления: R (сопротивление участка цепи), внутреннее сопротивление амперметра и внутреннее сопротивление источника тока.

Сегодня мы понимаем, что электрическая проводимость обусловлена движением свободных электронов, а сопротивление – столкновением этих электронов с атомами кристаллической решетки. При каждом таком столкновении часть энергии свободного электрона передается атому, который, начинает колебаться более интенсивно, и в результате мы наблюдаем нагревание проводника под действием электрического тока. Повышение напряжения в цепи никак не сказывается на доле тепловых потерь такого рода, и соотношение напряжения и электрического тока остается постоянным. Однако, когда Георг Ом сформировал свой закон, атомная теория строения вещества находилась в зачаточном состоянии, а до открытия электрона было еще несколько десятилетий. Таким образом, для него формула I = V/R была чисто экспериментальным результатом. Сегодня мы имеем достаточно стройную и одновременно сложную теорию электропроводности и понимаем, что закон Ома в его первозданном виде – всего лишь грубое приближение. Однако это не мешает нам с успехом использовать его для расчета самых сложных электрических цепей, применяющихся в промышленности и быту. Так как же применить Закон Ома на практике? Возьмем, к примеру, светодиод, который необходимо “запитать” от 9 В. Источником питания будет батарейка типа РРЗ, известная в народе как “Крона” (см. Рис. 2).
Если светодиод подключить в “Кроне” напрямую, он попросту сгорит. Светодиод имеет определенное напряжение и силу тока, которая через него может проходить . В большинстве случаев ток ограничивается несколькими десятками мА (миллиампер) и напряжение 2..4,5 В. Яркие светодиоды обычно рассчитаны на напряжение 3 В и ток 30 мА, т.е. при данном токе потребления светодиод находится под напряжением 3 В. Следовательно, напряжение на светодиоде зависит от тока и по Закону Ома, для нормальной работы светодиода нужно подобрать всего лишь сопротивление (R) в цепи светодиода (см. Рис. 2).

Для начала необходимо получить разность напряжения питания цепи от напряжения светодиода: 9 – 3 = 6 В. Переводим ток светодиода в амперы: 30 мА = 0,03 А. И находим сопротивление, поделив полученное напряжение на ток светодиода: 6/0,03 = 200 Ом. Отсюда следует, что резистор R в данной цепи должен иметь сопротивление 200 Ом. Вот так мы применили на практике Закон Ома. Понятное дело, что более сложные цепи требует сложнейших расчетов. Здесь мы сделает отступление, чтобы получше узнать батарейку. Батарейка – источник электричества для автономного питания разнообразных устройств, который делится на солевые, щелочные и литиевые (Рис. 3). Солевые батарейки предназначены для использования в приборах с низким потреблением энергии, например, в пультах дистанционного управления. Щелочные элементы (Alkalin) идеально подходят для питания настольных часов. Литиевые батарейки обычно имеют напряжение, кратное 3 В, и нашли применение в компьютерных системных платах (материнских) для сохранения настроек BlOSa. Цилиндрические батарейки имеют несколько типов: “AAA” (мизинчиковые), “АА” (пальчиковые) , “С” и “D” . Чем больше размером батарейка, тем большей мощностью она обладает. 3R12 пришла к нам из XX века и сегодня практически не применяется в устройствах, ведь ее можно составить из трех последовательно соединенных полторовольтовых батареек: 1,5В + 1,5В + 1,5В = 4,5В. Старение батареек приводит к химической реакции, которая разрушает корпус источника питания. Поэтому батарейки текут. Хотя производители и заявляют, что герметизация корпуса стала идеальной, даже дорогие батарейки протекают. Предупредить этот процесс можно периодической проверкой срока годности.

Какие только детали не потребуются для изготовления электронных схем. Здесь и резисторы, и транзисторы, и конденсаторы, и диоды… Из всего разнообразия деталей необходимо выбрать по внешнему виду нужную, расшифровать надпись на ее корпусе, определить выводы и распознать ее на принципиальной схеме. О том, как это сделать, и будет рассказано далее. Принципиальная схема – изображение устройства в виде значков, которые в реальности представляют радиодетали, и связующих между ними линий (соединений). Рядом с каждым из таких элементов указывают их буквенно-цифровой индекс и номинал . Например, прямоугольником обозначают резистор, а надпись рядом с ним Rl lO kOm расшифровывается так: R – резистор; 1 – его индекс; lO kOm – сопротивление.


Перейти к следующей статье: “Резисторы”



radio-stv.ru

Простые примеры использования Закона Ома

Применение Закона Ома становится очевидным на простых электрических цепях, где имеется один источник тока (ЭДС).

Самый простая электрическая цепь — это такая цепь, которая содержит всего лишь два элемента, один из которых источник тока, а другой — резистивная нагрузка. В качестве источника может быть химический аккумулятор или гальваническая батарея. Для наглядности в качестве резистивной нагрузки может быть выбрана электрическая лампа накаливания, но вместо неё можно использовать любой нагревательный элемент, в том числе просто кусок провода.

Давайте посмотрим, как уравнения Закона Ома могут нам помочь анализировать простые схемы.

Рассмотрим схему нашей простейшей электрической цепи:

В приведённой выше схеме, есть только один источник напряжения (батареи, слева) и только одно сопротивление — резистивная нагрузка (лампы, справа). Для этой схемы достаточно легко применять Закон Ома. Если мы знаем значения любых двух из трёх величин (напряжение, ток и сопротивление) в этой схеме, тогда мы можем использовать Закон Ома для определения третьего.

В этом первом примере мы будем вычислять величину тока (I) в цепи, при заданных значениях напряжения ЭДС источника (E) и сопротивления (R):

Чему равна величина тока (I) в этой схеме?

Во втором примере мы рассчитаем величину сопротивления (R), при заданных значений напряжения (E) и тока (I):

Чему равна величина сопротивления (R) лампы?

В последнем примере мы рассчитаем величину напряжения, выдаваемое батареей, для известных значений тока (I) и сопротивление (R):

Какова величина напряжения, которое выдаёт аккумуляторная батарея?

Закон Ома очень простой и полезный инструмент для анализа электрических цепей. Он используется так часто при изучении электротехники и электроники, что должен быть хорошо отложен в памяти каждого серьёзного студента. При работе в качестве электротехнического персонала (электромонтёром), применение Закона Ома доводится до автоматизма, потому как очень часто используется.

Для тех, кто плохо знаком с алгеброй, есть хороший способ запомнить вариации применения Закона Ома. Для этого достаточно изобразить треугольник на листке бумаги, который будет разбит на три части. Вершина треугольника — это E, правый угол — это R, а левый угол — это I.

Для удобства полезно запомнить эту картинку:

Если вы знаете E и I, и желаете определить чему равно R, тогда нужно зачеркнуть на картинке неизвестное R, и наглядно будет видно, что нужно сделать:

Если вам известны E и R, и вы желаете отыскать значение тока I, тогда выполняем подобное действие, но зачёркиваем неизвестное I. В итоге наглядно видим, что для отыскания I нужно напряжение делить на сопротивление R:

Если вы знаете I и R, и желаете определить Е, тогда зачеркните E и посмотрите, что получилось. Вам нужно умножить величину тока I, протекающего в электрической цепи (ветви), на величину сопротивления участка цепи. В итоге вы получите значение падения напряжения E на этом участке:

В конце концов, вы придёте к тому, что знание алгебры необходимо для глубокого изучения электротехники и электроники. Приведённый выше способ позволит вам легко выполнять свои первые расчёты электрических цепей. Если же вы знакомы с алгеброй, то вам достаточно помнить формулировку Закона Ома с тем, чтобы составить необходимую пропорцию и из неё получить все остальные формулы для нахождения неизвестных величин.

Дата: 24.06.2015

© Valentin Grigoryev (Валентин Григорьев)

Возможно Вам будут интересны следующие статьи из этого раздела:

Если Вы не нашли ничего интересного в этом разделе, тогда Вам следует воспользоваться левым вертикальным меню, чтобы попасть в интересующий Вас раздел сайта.

electricity-automation.com

Разъясняем закон Ома буквально на пальцах и картинках

Всем, кто забыл, а по сути никогда и не понимал его, посвящается. Закон Ома — один из самых важных и часто используемых на практике, в электронике, в частности.

Вспоминаем формулировку закона Ома: сила тока на участке цепи прямо пропорциональна напряжению,  приложенному к этому участку, и обратно пропорциональна сопротивлению.
Теперь разберем эту, не самую, на первый взгляд простую, формулировку.
Первое понятие: сила тока на участке цепи прямо пропорциональна напряжению,  приложенному к этому участку.
Это понять довольно несложно: прямая зависимость: чем выше прикладываем напряжение, тем большую получаем величину тока! Выше напряжение — сильнее ток!
Второе понятие: и обратно пропорциональна сопротивлению.
Тут тоже довольно понятно: чем выше сопротивление, тем ниже сила тока.    

Формула закона Ома

Легко и быстро находить нужные вам значения по этой формуле помогают такие вот подсказки, основанные на «магическом треугольнике».    

А теперь — веселые картинки

Чтобы еще легче было понять, давайте рассмотрим его на знакомом примере из жизни — с водопроводной водой.
«Сила тока на участке цепи прямо пропорциональна напряжению,  приложенному к этому участку».
Вода — это ток. Течение — сила тока, давление воды — это напряжение, а труба — это проводник. Ясно, что чем выше мы поднимем бачок, тем выше станет давление воды (напряжение) и тем сильнее станет течение воды (сила тока).  Опусти мы бачок — уменьшится давление (напряжение) и соответственно, ниже станет течение (сила тока).
Прямая зависимость. Чем выше напряжение, тем си

porosenka.net

Разъясняем закон Ома буквально на пальцах и картинках

Всем, кто забыл, а по сути никогда и не понимал его, посвящается. Закон Ома — один из самых важных и часто используемых на практике, в электронике, в частности.

Вспоминаем формулировку закона Ома: сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку, и обратно пропорциональна сопротивлению.

Теперь разберем эту, не самую, на первый взгляд простую, формулировку.

Первое понятие: сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку.

Это понять довольно несложно: прямая зависимость: чем выше прикладываем напряжение, тем большую получаем величину тока!

Выше напряжение — сильнее ток!

Второе понятие: и обратно пропорциональна сопротивлению.

Тут тоже довольно понятно: чем выше сопротивление, тем ниже сила тока.

Формула закона Ома

Легко и быстро находить нужные вам значения по этой формуле помогают такие вот подсказки, основанные на «магическом треугольнике».

А теперь — веселые картинки

Чтобы еще легче было понять, давайте рассмотрим его на знакомом примере из жизни — с водопроводной водой.
«Сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку».

Вода — это ток. Течение — сила тока, давление воды — это напряжение, а труба — это проводник. Ясно, что чем выше мы поднимем бачок, тем выше станет давление воды (напряжение) и тем сильнее станет течение воды (сила тока). Опусти мы бачок — уменьшится давление (напряжение) и соответственно, ниже станет течение (сила тока).

Прямая зависимость. Чем выше напряжение, тем сильнее сила тока, очень наглядно.

Теперь проверим на жизненных реалиях вторую часть формулировки закона Ома, добавим в нашу водопроводную схему понятие сопротивления. То есть нарисуем в трубе с водой заслонку.

«Сила тока на участке цепи обратно пропорциональна сопротивлению.»

Если опускать в трубе заслонку (повышая сопротивление), она будет мешать току воды, соответственно, сила течения (сила тока) снижается. И наоборот, при поднятии заслонки (снижая сопротивление) мы видим увеличение силы тока.

Чем выше сопротивление — тем меньше сила тока, чем ниже сопротивление, тем выше сила тока. Логично.

 

Источник

Похожие статьи

feel-feed.ru