Зарядка для аккумулятора из блока питания компьютера – Сообщества › Электронные Поделки › Блог › ♥ Зарядное устройство из компьютерного блока питания

Зарядное устройство для аккумуляторов из блока питания ПК — DRIVE2

Лежит у меня пяток бесперспективных ATX блоков питания компа. Бесперспективных потому что старые, разъемы не 24, а просто 20 pin, надо перепаивать, а перепаивать нет смысла потому что внутри голимый китай и чтобы привести блок к более менее надежному варианту нужно вложение денег равных по стоимости самого нового блока…
Так как с электроникой я не то что на «ты», а — «эй иди сюда давай» :))) решил превратить пару блочков в зарядное устройство для аккумуляторов
Писать в подробностях особо смысла нет — идея не нова, мануал по переделке здесь radiokot.ru/circuit/power/charger/27/
Еще драйвовчанин сделал почти то что и я www.drive2.ru/l/5525057/
Штатную защиту блока по КЗ я все таки оставил :))) Оставил также выход +5Вольт

Немного теории
Ближе к концу осени у автомобилистов нередко возникает вопрос качественной зарядки аккумулятора. Как же это делать для достижения наилучшего результата?
Свинцовые аккумуляторные батареи заряжаются от источника «выпрямленного» (постоянного) тока. Для этого годится любое устройство, позволяющее регулировать ток или напряжение зарядки, при условии что оно обеспечивает увеличение зарядного напряжения до 16,0-16,5 вольт. В противном случае зарядить современную 12-вольтовую батарею полностью, до 100 процентов ее емкости не удастся.

Для зарядки положительный вывод зарядного устройства соединяется с клеммой (+) аккумулятора, а отрицательный вывод — с клеммой (-).

Существуют два режима зарядки: режим неизменности тока и режим неизменности напряжения. По своему влиянию на продолжительность жизни аккумулятора эти режимы равнозначны.

Зарядка в режиме неизменности тока.
Аккумулятор заряжается при токе, сила которого составляет одну десятую часть от номинальной емкости при двадцатичасовом разряде. То есть, для аккумулятора, имеющего емкость 60 А/ч (ампер в час), нужен зарядный ток 6А. Недостаток этого режима зарядки состоит в необходимости неоднократного (через каждые 1-2 часа) контроля величины тока и его регулирования, а также сильное выделение газов в конце процесса.

Для того чтобы снизить газовыделение и обеспечить более полную заряженность аккумулятора полезно применять постепенное уменьшение силы тока по мере повышения напряжения заряда. При достижении напряжением значения 14,4 вольт ток заряда нужно уменьшить наполовину до 3 ампер (для аккумулятора, емкостью 60 А/ч) и продолжать зарядку, пока не начнется газовыделение.

В современных аккумуляторах, не снабженных отверстиями для доливки воды, после увеличения напряжения зарядки до 15 вольт полезно еще раз уменьшить зарядный ток наполовину — до 1,5 ампер (для аккумулятора, емкостью 60 А/ч).

Полностью заряженным аккумулятор можно считать, если напряжение и ток зарядки остаются неизменными 1-2 часа.

У так называемых необслуживаемых аккумуляторов состояние полной заряженности наступает при значении напряжения, равном 16,3-16,4 вольт (разница зависит от качества электролита и состава сплавов, из которых сделаны решетки).

Зарядка в режиме неизменности напряжения.
При использовании этого метода уровень заряженности аккумулятора в конце процесса зависит от величины напряжения зарядки, выдаваемого зарядным устройством. Так после непрерывной 24-часовой зарядки при значении напряжения 14,4 вольт 12-вольтовый аккумулятор будет заряжен до 75-85% от своей емкости, при значении напряжения 15 вольт — до 85-90%, а при 16 вольтах — до 95-97%. Полностью за 20-24 час. аккумулятор заряжается при подаче на него напряжения 16,3-16,4 вольт.

В зависимости от емкости и внутреннего сопротивления аккумулятора в момент начала зарядки сила проходящего через него тока может превышать 50 ампер. Поэтому во избежание выхода его из строя в зарядных устройствах предусмотрено ограничение максимального тока до 20-25 ампер.

В процессе зарядки напряжение на клеммах аккумулятора постепенно достигает значения напряжения зарядного устройства, а сила тока заряда уменьшается почти до нуля (при условии что величина напряжения зарядки меньше напряжения, при котором начинается выделение газов). Таким образом зарядку можно производить без постоянного внимания человека. Показателем окончания зарядки здесь считается увеличение напряжения на клеммах аккумулятора до 14,3-14,5 вольт. В это время обычно включается зеленый световой сигнал, показывающий момент достижения требуемого напряжения и окончания процесса зарядки.

На практике для нормальной зарядки (до 90-95% емкости) необслуживаемых аккумуляторов современными зарядными устройствами с максимальным напряжением 14,4-14,5 вольт обычно требуется время более 24 часов.

Зарядка аккумулятора на автомашине.
На автомашине аккумулятор подзаряжается в режиме неизменного напряжения во время работы двигателя. По договоренности с изготовителями аккумуляторов автопроизводители устанавливают в генераторах напряжение зарядки 13,8-14,4 вольта — меньшее, чем напряжение, при котором происходит интенсивное газовыделение.

При понижении температуры воздуха возрастает внутреннее сопротивление аккумулятора, из-за чего эффективность его зарядки в режиме неизменности напряжения уменьшается. По этой причине аккумулятор на автомашине полностью возможно зарядить не всегда, а в зимнее время при напряжении на клеммах 13,9-14,4 вольта и включенных фонарях дальнего света заряженность АКБ не превышает 70-75%. В связи с этим зимой в условиях низких температур, небольших расстояний пробега автомобиля и частых пусках холодного двигателя полезно хотя бы раз в месяц заряжать аккумулятор в помещении с применением зарядного устройства.
Справочная информация

Полный размер

Теперь по порядку:
В руководстве устанавливают выходное напряжение 14,5 Вольт — выше начинает кипеть электролит!
Однако в процессе обкатки-тестирования были замечены аккумуляторы, которые начинают бодренько заряжаться, но по мере приближения к отметке 14,5 Вольт (точка кипения) ток заряда резко падает и надо очень долго ждать (около 7-8 часов) пока он зарядится полностью. Попадались и такие которые вообще в принципе заряжались еле еле и 14,5 вольт поданных на него было явно недостаточно.
К слову сказать советское зарядное устройство для 12 и 24-вольтовых аккумуляторов выдает на холостую 21 вольт в режиме 12 вольтового аккумулятора и 40 вольт для 24 вольтового
Поэтому я решил пойти немного по другому пути — заморачиваться с ограничением по току не стал, а вместо ограничения поставил предохранитель на 8 Ампер на выходе, этот же предохранитель выполняет и функции защиты от переполюсовки
Вместо ограничения тока сделал регулировку выходного напряжения
Блок позволяет выдавать напряжения от 9 до 18 вольт (на самом деле от 5 до 24, но т.к. я не стал дергать защиту, получился указанный диапазон) чего более чем достаточно

Полный размер

radiokot.ru/circuit/power/charger/27/09.gif
У TL494 за выходное напряжение отвечают резисторы которые подключены к первой ноге, чем меньше сопротивление между общим проводом — тем больше выходное напряжение (в общем реализован на 1 ноге делитель на резисторах)
1. Подбором 3 обведенных зеленым добился выходного напряжения около 17 вольт
2. вместо R42 идущего с канала +12 поставил переменник 6,8 килоом последовательно с резистором 13 килоом
Таким образом получил диапазон регулировки выходного напряжения от 10,5 до 17 Вольт

Перепаял выходные конденсаторы
— в канале +12 с номинала 16 В на 25 В
— в канал +5 вместо 10-вольтовых поставил поставил 16 вольтовые из канала +12

вентилятор прицепил в канал +5, так он будет вертеться гораздо тише, да и 17 Вольт на выходе ему не совсем понравятся

Заказал у китайцев цифровой вольтметр-амперметр ru.aliexpress.com/item/DC…er-Gauge/32314616109.html
ток до 10А, напряжение до 100В, в общем то то что надо
Отдельно по подключению этого вольтметра амперметра
-два мелких провода, это питание (от 4,5 до 30 вольт)
-три потолще это токовый датчик амперметра (синий) и вход вольтметра (красный)
черные минусовые провода объединены

схема подключение вольтметра-амперметра

— Таким образом имеем зарядник с регулировкой выходного напряжения от 10,5 до 17 вольт
— Если надо оставить на ночь «без присмотра», выставляем напряжение на холостом ходу 14,3-14,5 вольт и подключаем к аккумулятору
На мой взгляд имеем более гибкое устройство при абсолютном минимуме возни
Ну и как это все работает

Полный размер

Полный размер

Полный размер

Полный размер

А вольтметр зараза подвирает, надо будет подкрутить, там есть подстройка

Полный размер

А вот амперметр точен как никогда

P.S>
1. Для владельцев аккумуляторов Са/Са+ — информация получена от официального представителя производителя — для того что бы ваш аккумулятор не «сдох» через 1-2 года, данные аккумуляторы в обязательном порядке подзаряжать раз в 2-3 месяца, вне зависимости от времени года и напряжения бортсети вашей «раздрыги»!
2. Для самой «правильной» зарядки АКБ (особенно кальциевой) настоятельно рекомендуется следовать рекомендациям ПРОИЗВОДИТЕЛЯ, а не общепринятым стандартам.

www.drive2.ru

Зарядное устройство для автомобильного аккумулятора из блока питания компьютера

Вы можете самостоятельно сделать зарядное устройство из обычного блока питания компьютера.

Какими свойствами оно будет обладать: напряжение, на аккумулятор будет 14 В,а вот зарядный ток будет зависеть от устройства. Этот способ зарядки предусмотрен генератором автомобиля в стандартном режиме работы.

Отличие этой статьи от иных аналогичных в том, что сборка изделия довольно проста. Вам не нужно делать самодельные платы, и навороченные транзисторы.

Собственно что нам нужно:
1) обычный блок питания от компьютера примерно на 230 вт,то есть канал 12 В потребляет 8 А.
2) автомобильное реле на 12В (с четырьмя контактами) и два диода на ток 1А
3) несколько резисторов разных мощностей (зависит от модели самого блока питания)

После вскрытия этого блока питания автор обнаружил, что в его основе микросхема UC3843. Эта микросхема используется как генератор импульсов и для защиты от сверхтоков. Регулятор напряжения на каналах выхода представлен микросхемой TL431:


Там же был установлен подстроечный резистор, служащий для регуляции выходного напряжения в определенном диапазоне.

Чтобы сделать из этого блока питания зарядное устройство, нам нужно будет убрать ненужные детали.

Отпаиваем от платы переключатель 220\110В и все его провода.
Он нам не нужен, ведь наш блок питания будет всегда работать от напряжения 220.

Затем убираем все провода на выходе, кроме пучка черных проводов (там 4 провода) — это 0В или «общий», и пучка желтых проводов (в пучке 2 провода) — это «+».

Потом сделаем так, чтобы блок работал постоянно при подключении к сети. Стандартно он работает, только если замкнуты нужные провода в тех пучках. Еще необходимо убрать защиту от перенапряжения, так как она отключает блок если напряжение станет выше определенного значения.

Всему причиной то, что нам нужно 14.4В на выходе устройства а не стандартные 12.

Оказалось, что сигналы включения и защиты функционируют через один оптрон,а их всего три.
Для того, чтобы зарядка работа всегда придется замкнуть контакты этого оптрона перемычкой:


После этого действия блок питания будет работать независимо от напряжения в сети.

Следующим шагом будет установка выходного напряжения в 14.4В вместо 12. Для этого пришлось заменить резистор, который был включен последовательно с подстроечным, на резистор 2.7кОм:


Теперь предстоит демонтировать транзистор, который рядом с TL431. (зачем он неизвестно, но блокирует работу микросхемы) Этот транзистор находился вот на этом месте:

Для стабилизации, на выход блока питания добавляем нагрузку в виде резистора на 200 Ом 2Вт( 14.4в) а для канала 5В резистор в 68 Ом:

После установки этих резисторов можно приступать к регулированию выходного напряжения без нагрузки на 14.4В. Чтобы ограничить выходной ток на 8А ( допустимое значение для нашего блока) нужно увеличить мощность резистора в цепи силового трансформатора, который используется как датчик перегрузки.

Устанавливаем резистор на 47Ом 1 вт вместо стандартного.


И все же не помешает добавить защиту от подключения обратной полярностью. Берем простое автомобильное реле на 12В и два диода 1N4007. Так же чтобы видеть режим работы прибора, неплохо было бы сделать еще 1 диод и резистор 1кОм 0.5Вт.

Схема будет таковой:


Система работы: при подключении аккумулятора верной полярностью, реле включается за счет оставшегося в аккумуляторе заряда. После срабатывания реле идет зарядка аккумулятора от блока питания через замкнутый контакт реле,это нам и будет показывать внешний диод.

Диод, который подключен параллельно катушке реле, служит для защиты от перенапряжения при ее отключении, возникающих за счет ЭДС самоиндукции.

Чтобы приклеить реле — лучше использовать силиконовый герметик, так как он останется эластичным даже после засыхания.


Затем припаиваются провода к аккумулятору. Лучше взять гибкие, с сечением 2.5мм2, длинной около метра. Для подключения к аккумулятору используются «крокодилы» на концах проводов. Чтобы закрепить их в корпусе автор использовал пару нейлоновых стяжек( он их продел в просверленные в радиаторе отверстия)

На этом работы завершены:



Замечание: У прибора есть недостатки, например нет индикации степени заряженности аккумулятора. Но есть и достоинства: за 24 часа аккумулятор полностью заряжается, и при этом может не отключаться, так как он не «перезарядится» и не испортится.

Источник

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Сделать зарядное устройство с помощью блока питания компьютера.

Зарядное устройство с помощью блока питания компьютера

У компьютерного блока питания, наряду с такими преимуществами, как малые габариты и вес при мощности от 250 Вт и выше, есть один существенный недостаток – отключение при перегрузке по току. Этот недостаток не позволяет использовать БП в качестве зарядного устройства для автомобильного аккумулятора, поскольку у последнего в начальный момент времени зарядный ток достигает нескольких десятков ампер. Добавление в БП схемы ограничения тока позволит избежать его отключения даже при коротком замыкании в цепях нагрузки.

Зарядка автомобильного аккумулятора происходит при постоянном напряжении. При этом методе в течение всего времени заряда напряжение зарядного устройства остается постоянным. Заряд аккумулятора таким методом в ряде случаев предпочтителен, так как он обеспечивает более быстрое доведение батареи до состояния, позволяющего обеспечить запуск двигателя. Сообщаемая на первоначальном этапе заряда энергия тратится преимущественно на основной зарядный процесс, то есть на восстановление активной массы электродов. Сила зарядного тока в первоначальный момент может достигать 1,5С, однако для исправных, но разряженных автомобильных аккумуляторов такие токи не принесут вредных последствий, а наиболее распространённые БП ATX мощностью 300 – 350 Вт не в состоянии без последствий для себя отдать ток более 16 – 20А.

Максимальный (начальный) зарядный ток зависит от модели используемого БП, минимальный ток ограничения 0,5А. Напряжение холостого хода регулируется и для заряда стартёрного аккумулятора может составлять 14…14,5В.

Вначале необходимо доработать сам БП, отключив у него защиты по превышению напряжений +3,3В, +5В, +12В, -12В, а также удалив неиспользуемые для зарядного устройства компоненты.

Для изготовления ЗУ выбран БП модели FSP ATX-300PAF. Схема вторичных цепей БП рисовалась по плате, и несмотря на тщательную проверку, незначительные ошибки, к сожалению, не исключены.

 

На рисунке ниже представлена схема уже доработанного БП.

 

Для удобной работы с платой БП последняя извлекается из корпуса, из неё выпаиваются все провода цепей питания +3,3V, +5V, +12V, -12V, GND, +5Vsb, провод обратной связи +3,3Vs, сигнальная цепь PG, цепь включения БП PSON, питание вентилятора +12V. Вместо дросселя пассивной коррекции коэффициента мощности (установлен на крышке БП) временно впаивается перемычка, провода питания ~220V, идущие от выключателя на задней стенке БП, выпаиваются из платы, напряжение будет подаваться сетевым шнуром.

В первую очередь деактивируем цепь PSON для включения БП сразу после подачи сетевого напряжения. Для этого вместо элементов R49, C28 устанавливаем перемычки. Убираем все элементы ключа, подающего питание на трансформатор гальванической развязки Т2, управляющего силовыми транзисторами Q1, Q2 (на схеме не показаны), а именно R41, R51, R58, R60, Q6, Q7, D18. На плате БП контактные площадки коллектора и эмиттера транзистора Q6 соединяются перемычкой.

 

После этого подаем ~220V на БП, убеждаемся в его включении и нормальной работе.

Далее отключаем контроль цепи питания -12V. Удаляем с платы элементы R22, R23, C50, D12. Диод D12 находится под дросселем групповой стабилизации L1, и его извлечение без демонтажа последнего (о переделке дросселя будет написано ниже) невозможно, но это и не обязательно.

 

Удаляем элементы R69, R70, C27 сигнальной цепи PG.

 

Включаем БП, убеждаемся в его работоспособности.

Затем отключается защита по превышению напряжения +5В. Для этого выв.14 FSP3528 (контактная площадка R69) соединяется перемычкой с цепью +5Vsb.

 

На печатной плате вырезается проводник, соединяющий выв.14 с цепью +5V (элементы L2, C18, R20).

 

Выпаиваются элементы L2, C17, C18, R20.

 

Включаем БП, убеждаемся в его работоспособности.

Отключаем защиту по превышению напряжения +3,3В. Для этого на печатной плате вырезаем проводник, соединяющий выв.13 FSP3528 с цепью +3,3V (R29, R33, C24, L5).

 

Удаляем с платы БП элементы выпрямителя и магнитного стабилизатора L9, L6, L5, BD2, D15, D25, U5, Q5, R27, R31, R28, R29, R33, VR2, C22, C25, C23, C24, а также элементы цепи ООС R35, R77, C26. После этого добавляем делитель из резисторов 910 Ом и 1,8 кОм, формирующий из источника +5Vsb напряжение 3,3В. Средняя точка делителя подключается к выв.13 FSP3528, вывод резистора 931 Ом (подойдёт резистор 910 Ом) — к цепи +5Vsb, а вывод резистора 1,8 кОм — к «земле» (выв. 17 FSP3528).

 

Далее, не проверяя работоспособность БП, отключаем защиту по цепи +12В. Отпаиваем чип-резистор R12. В контактной площадке R12, соединённой с выв. 15 FSP3528 сверлится отверстие 0,8 мм. Вместо резистора R12 добавляется сопротивление, состоящее из последовательно соединённых резисторов номинала 100 Ом и 1,8 кОм. Один вывод сопротивления подсоединяется к цепи +5Vsb, другой – к цепи R67, выв. 15 FSP3528.

 

Отпаиваем элементы цепи ООС +5V R36, C47.

 

После удаления ООС по цепям +3,3V и +5V необходимо пересчитать номинал резистора ООС цепи +12V R34. Опорное напряжение усилителя ошибки FSP3528 равно 1,25В, при среднем положении регулятора переменного резистора VR1 его сопротивление составляет 250 Ом. При напряжении на выходе БП в +14В, получаем: R34 = (Uвых/Uоп — 1)*(VR1+R40) = 17,85 кОм, где Uвых, В – выходное напряжение БП, Uоп, В – опорное напряжение усилителя ошибки FSP3528 (1,25В), VR1 – сопротивление подстроечного резистора, Ом, R40 – сопротивление резистора, Ом. Номинал R34 округляем до 18 кОм. Устанавливаем на плату.

 

Конденсатор C13 3300х16В желательно заменить на конденсатор 3300х25В и такой же добавить на место, освободившееся от C24, чтобы разделить между ними токи пульсаций. Плюсовой вывод С24 через дроссель (или перемычку) соединяется с цепью +12V1, напряжение +14В снимается с контактных площадок +3,3V.

 

Включаем БП, подстройкой VR1 устанавливаем на выходе напряжение +14В.

После всех внесённых в БП изменений переходим к ограничителю. Схема ограничителя тока представлена ниже.

 

Резисторы R1, R2, R4…R6, соединённые параллельно, образуют токоизмерительный шунт сопротивлением 0,01 Ом. Ток, протекающий в нагрузке, вызывает на нём падение напряжения, которое ОУ DA1.1 сравнивает с опорным напряжением, установленным подстроечным резистором R8. В качестве источника опорного напряжения используется стабилизатор DA2 с выходным напряжением 1,25В. Резистор R10 ограничивает максимальное напряжение, подаваемое на усилитель ошибки до уровня 150 мВ, а значит, максимальный ток нагрузки до 15А. Ток ограничения можно рассчитать по формуле I = Ur/0,01, где Ur, В – напряжение на движке R8, 0,01 Ом – сопротивление шунта. Схема ограничения тока работает следующим образом.

Выход усилителя ошибки DA1.1 подсоединён с выводом резистора R40 на плате БП. До тех пор, пока допустимый ток нагрузки меньше установленного резистором R8, напряжение на выходе ОУ DA1.1 равно нулю. БП работает в штатном режиме, и его выходное напряжение определяется выражением: Uвых=((R34/(VR1+R40))+1)*Uоп. Однако, по мере того, как напряжение на измерительном шунте из-за роста тока нагрузки увеличивается, напряжение на выв.3 DA1.1 стремится к напряжению на выв.2, что приводит к росту напряжения на выходе ОУ. Выходное напряжение БП начинает определяться уже другим выражением: Uвых=((R34/(VR1+R40))+1)*(Uоп-Uош), где Uош, В – напряжение на выходе усилителя ошибки DA1.1. Иными словами, выходное напряжение БП начинает уменьшаться до тех пор, пока ток, протекающий в нагрузке, не станет чуть меньше установленного тока ограничения. Состояние равновесия (ограничения тока) можно записать так: Uш/Rш=(((R34/(VR1+R40))+1)*(Uоп-Uош))/Rн, где Rш, Ом – сопротивление шунта, Uш, В – напряжение падения на шунте, Rн, Ом – сопротивление нагрузки.

ОУ DA1.2 используется в качестве компаратора, сигнализируя с помощью светодиода HL1 о включении режима ограничения тока.

Печатная плата  и схема расположения элементов ограничителя тока

 

 

 

Несколько слов о деталях и их замене. Электролитические конденсаторы, установленные на плате БП FSP, имеет смысл заменить на новые. В первую очередь в цепях выпрямителя дежурного источника питания +5Vsb, это С41 2200х10V и С45 1000х10V. Не забываем о форсирующих конденсаторах в базовых цепях силовых транзисторов Q1 и Q2 – 2,2х50V (на схеме не показаны). Если есть возможность, конденсаторы выпрямителя 220В (560х200V) лучше заменить на новые, большей ёмкости. Конденсаторы выходного выпрямителя 3300х25V должны быть обязательно с низким ЭПС – серии WL или WG, в противном случае они быстро выйдут из строя. В крайнем случае, можно поставить б/у конденсаторы этих серий на меньшее напряжение – 16В.

Прецизионный ОУ DA1 AD823AN «rail-to-rail» как нельзя кстати подходит к данной схеме. Однако его можно заменить на порядок более дешёвым ОУ LM358N. При этом стабильность выходного напряжения БП будет несколько хуже, также придется подбирать номинал резистора R34 в меньшую сторону, поскольку у этого ОУ минимальное выходное напряжение вместо нуля (0,04В, если быть точным) 0,65В.

Максимальная суммарная рассеиваемая мощность токоизмерительных резисторов R1, R2, R4…R6 KNP-100 равна 10 Вт. На практике лучше ограничиться 5 ваттами – даже при 50% от максимальной мощности их нагрев превышает 100 градусов.

Диодные сборки BD4, BD5 U20C20, если их действительно стоит 2шт., менять на что-либо более мощное не имеет смысла, обещанные производителем БП 16А они держат хорошо. Но бывает так, что в действительности установлена только одна, и в этом случае необходимо либо ограничиться максимальным током в 7А, либо добавить вторую сборку.

Испытание БП током 14А показало, что уже спустя 3 минуты температура обмотки дросселя L1 превышает 100 градусов. Долговременная безотказная работа в таком режиме вызывает серьёзное сомнение. Поэтому, если подразумевается нагружать БП током свыше 6-7А, дроссель лучше переделать.

В заводском исполнении обмотка дросселя +12В намотана одножильным проводом диаметром 1,3 мм. Частота ШИМ – 42 кГц, при ней глубина проникновения тока в медь составляет около 0,33 мм. Из-за скин-эффекта на данной частоте эффективное сечение провода составляет уже не 1,32 мм2, а только 1 мм2, что недостаточно для тока в 16А. Иными словами, простое увеличение диаметра провода для получения большего сечения, а следовательно, уменьшения плотности тока в проводнике неэффективно для этого диапазона частот. К примеру, для провода диаметром 2 мм эффективное сечение на частоте 40 кГц только 1,73мм2, а не 3,14 мм2, как ожидалось. Для эффективного использования меди намотаем обмотку дросселя литцендратом. Литцендрат изготовим из 11 отрезков эмалированного провода длиной 1,2м и диаметром 0,5мм. Диаметр провода может быть и другим, главное, чтобы он был меньше удвоенной глубины проникновения тока в медь – в этом случае сечение провода будет использовано на 100%. Провода складываются в «пучок» и скручиваются с помощью дрели или шуруповёрта, после чего жгут продевается в термоусадочную трубку диаметром 2 мм и обжимается с помощью газовой горелки.

 

Готовый провод целиком наматывается на кольцо, и изготовленный дроссель устанавливается на плату. Наматывать обмотку -12В смысла нет, индикатору HL1 «Питание» какой-либо стабилизации не требуется.

 

Остаётся установить плату ограничителя тока в корпус БП. Проще всего её прикрутить к торцу радиатора.

 

Подключим цепь «ООС» регулятора тока к резистору R40 на плате БП. Для этого вырежем часть дорожки на печатной плате БП, которая соединяет вывод резистора R40 с «корпусом», а рядом с контактной площадкой R40 просверлим отверстие 0,8мм, куда будет вставлен провод от регулятора.

 

Подключим питание регулятора тока +5В, для чего припаяем соответствующий провод к цепи +5Vsb на плате БП.

 

«Корпус» ограничителя тока присоединяется к контактным площадкам «GND» на плате БП, цепь -14В ограничителя и +14В платы БП выходят на внешние «крокодилы» для подключения к аккумулятору.

 

Индикаторы HL1 «Питание» и HL2 «Ограничение» закрепляются на месте заглушки, установленной вместо переключателя «110V-230V».

 

 

Скорее всего, в вашей розетке отсутствует контакт защитного заземления. Вернее, контакт, может быть, и есть, а вот провод к нему не походит. Про гараж и говорить нечего… Настоятельно рекомендуется хотя бы в гараже (подвале, сарае) организовать защитное заземление. Не стоит игнорировать технику безопасности. Это иногда заканчивается крайне плачевно. Тем, у кого розетка 220В не имеет контакта заземления, оборудуйте БП внешней винтовой клеммой для его подключения.

 

После всех доработок включаем БП и корректируем подстроечным резистором VR1 требуемое выходное напряжение, а резистором R8 на плате ограничителя тока – максимальный ток в нагрузке.

Подключаем к цепям -14В, +14В зарядного устройства на плате БП вентилятор 12В. Для нормальной работы вентилятора в разрыв провода +12В, либо -12В, включаются два последовательно соединённых диода, которые уменьшат напряжение питания вентилятора на 1,5В.

 

Подключаем дроссель пассивной коррекции коэффициента мощности, питание 220В от выключателя, прикручиваем плату в корпус. Фиксируем нейлоновой стяжкой выходной кабель зарядного устройства.

 

Прикручиваем крышку. Зарядное устройство готово к работе.

 

В заключение стоит отметить, что ограничитель тока будет работать с БП ATX (или AT) любого производителя, использующего ШИМ-контроллеры TL494, КА7500, КА3511, SG6105 или им подобным. Разница между ними будет заключаться лишь в методах обхода защит.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

avtomag329km.ru

Зарядное устройство из блока питания компьютера

Поскольку вопрос зарядки автомобильного аккумулятора актуален во все времена, рассмотрим процесс изготовления зарядного устройства для аккумулятора из блока питания. Данная технология не отличается особой сложностью. Благодаря ей вы всегда будете иметь при себе прибор для подзарядки аккумулятора. Изготовить зарядку можно в домашних условиях. Для этого вам понадобится любой блок питания компьютера. Подойдет даже блок мощностью в 150 Вт.

Вынув блок питания из системного блока, первым делом вы обратите внимание на кучу проводов. Для изготовления зарядного устройства все провода вам не понадобятся. Оставьте только выход плюсового провода 12 В. Теперь нужно отпаять резистор, который понижает напряжение до 12 В. Найти его очень просто. В цепи он проходит от нужного провода прямо на микросхему.

Такая картина наблюдается практически в любом блоке питания. Вместо этого резистора поставьте в блок питания потенциометр. Его наминал должен быть ниже номинала изъятого резистора. Это нужно для того, чтобы зарядное устройство из блока питания компьютера позволяло производить регулировку тока. Наша задача заключается в том, чтобы добиться на выходе устройства напряжения в 15В. Для любого аккумулятора такие показатели подходят оптимально.

На блоке питания есть зеленый провод. Он предназначен для включения. Этот провод необходимо припаять к корпусу устройства на минус. Вентилятор необходимо развернуть так, чтобы воздух нагнетался внутрь устройства. Так же вам придется приобрести и добавить в цепь амперметр. С помощью этого элемента вы сможете получать информацию о силе тока, подаваемого на аккумулятор. В качестве зажимов, которые цепляются к клеммам можно использовать обычные прищепки. Они хорошо проводят электрический ток и хорошо удерживаются на клеммах. Для этой цели также можно приобрести специальные устройства – крокодилы. Некоторые предлагают использовать зажимы для штор.

Теперь поговорим о преимуществах и недостатках зарядного устройства из блока питания. Главное достоинство такого устройства заключается в существенной экономии средств. Найти старый блок питания сегодня не составляет особого труда. Поскольку обычно в таких устройствах не используются импульсные трансформаторы, то сама конструкция получается намного более компактной. Однако, у такого зарядного устройства есть и недостаток. Это шум от работающего вентилятора.

www.vsedelkin.ru

Зарядное устройство из блока питания ПК

В нашу недолгую, но такую насыщенную эпоху компьютеризации запчасти от компьютеров часто можно достать через знакомых или обнаружить завалявшийся системный блок в своем гараже. Наверняка у каждого из вас был старый настольный компьютер который оказался ненужен. Если вам необходимо зарядное устройство, то у вас есть отличный шанс переделать блок питания от компьютера в компактное и мощное зарядное устройство.

Фрагмент схемы переделанный из оригинального блока питания в наше З/У:

В качестве микросхемы DA1 почти во всех блоках питания компьютеров применяется широтно-импульсный контроллер TL494, реже применяется аналог KA7500.Стандартные аккумуляторные батареи для автомобиля имеют ёмкость 55-65 А-ч, согласно установленным нормам для подзарядки свинцового кислотного аккумулятора требуется 10 процентов от своей емкости, значит нам нужен ток от 5 до 7 ампер, такой ток легко может выдать блок питания от ПК.

Процесс изготовления:

Для начала мы выпаиваем все ненужные провода цепей с напряжениями: -12 В, +5 В, -5В. Резистор подающий напряжение +5 В на вывод 1, необходимо также выпаять. На его место необходимо поставить подстроечный резистор 27 кОм, и подать на него напряжение с шины +12В.16 вывод DA1 необходимо отсоединить от общего провода, а выводы 14 и 15 выводов перерезать.

На одной из стенок БП устанавливаем плату из текстолита или другого изоляционного материала, через нее заводим в корпус сетевой шнур, шнур с клеммами для подсоединения к аккумулятору и ставим переменное сопротивление для регулировки тока зарядки.В качестве R11 можно использовать резистор мощностью 5 ватт, номиналом 0.1 Ома, для умощнения можно применить два пятиваттных сопротивлением 0.2 ома соединив их параллельно.

Здесь же, для настройки собранного зарядного устройства устанавливаем подстроечный резистор R1.В целях техники безопасности, гальванической развязки и исключения влияния паразитных цепей необходимо будет изолировать корпус блока питания от общего провода.На фото показана установка платы с мощными резисторами и соединения проводов согласно принципиальной схемы:

До того как вы закончите окончательную сборку устройства необходимо переменным резистором R1 при установленном в среднем положении потенциометра R10 напряжение холостого хода установить в пределах 13,5-14,5 В. Это напряжение соответствует полному заряду батареи.На конце выводов для подключения к клеммам АКБ зажимы типа «крокодил», плюсовой вывод красного цвета, минусовой — черного.

Внимание! В случае неправильного подключения полярности прибор может выйти из строя.

На фото представлена фотография зарядки 55-ти амперного аккумулятора, на которой цифровой измеритель напряжения показывает 12 с половиной вольт, что соответствует зарядке начального цикла. Изначально потенциометром выставляют ток подзаряда 5.5 ампер, в результате зарядки напряжение на аккумуляторной батарее будет увеличиваться, пока не достигнет максимума, который предварительно выставлен потенциометром R1,а ток уменьшится вплоть до О по окончании зарядки.После того как аккумулятор полностью зарядится устройство, компенсируя ток саморазряда батареи перейдет в режим стабилизации напряжения. В таком режиме устройство без опасений перезарядки может оставаться неограниченное время.При повторении можно отказаться от применения вольтметра и амперметра, если устройство применяется только для зарядки автомобильных АКБ, где полному заряду будет соответствовать напряжение 14,2 В, а для установки начального тока можно отградуировать шкалу потенциометра R10 от 5,5 до 6,5А.После окончания процесса сборки вы получили компактное, надёжное и экономичное устройство с автоматическим циклом зарядки, не требующее участия человека в процессе работы.

payaem.ru

Зарядка из блока питания компьютера

Данный обзор посвящен тому, как изготовить зарядное устройство для аккумулятора из блока питания. Максимальное напряжение, которое должно обеспечивать зарядное устройство для автомобильного аккумулятора, не должно превышать 14,4 В. Максимальный ток определяется только самими возможностями зарядного устройства. В штатном режиме работы электрической системы автомобиля реализуется именно такой способ.

В данной статье процесс изготовления зарядки максимально упрощен. В ней не требуется использования транзисторов, самодельных печатных плат и других дополнительных элементов.

Для переделки используем блок питания обычного персонального компьютера, мощность которого составляет 230 Вт. По каналу 12 В можно потреблять ток, не превышающий 8 А. Вскрыв блок питания, внутри обнаружили микросхему UC 3843. Данная микросхема подключается не по типовой схеме. Она просто служит генератором импульсов. Функции регулятора напряжения на выходе возложены на другую микросхему – TL431, которая установлена на дополнительной плате. Так же на дополнительной плате расположен подстроечный резистор, который позволяет регулировать напряжение на выходе в узком диапазоне значений.

Прежде всего, чтобы переделать блок питания в зарядное устройство, необходимо убрать все лишнее, а именно:

— все выходные провода, за исключением пучка желтых проводов (+) и пучка черных проводов (0 В).
— переключатель 220/110 В вместе с проводами. Достаточно просто отпаять провода от платы. Блок питания будет работать от сети напряжения 220В. Это устраняет возможность сжечь блок питания при случайном переключении в положение 110 В.

Далее необходимо сделать так, чтобы блок питания работал постоянно при подключении к сети. По умолчанию блок питания работает только в том случае, если замкнуть определенные провода в выходном пучке. Также необходимо устранить действие защиты от перенапряжения. Она отключает блок питания, когда выходное напряжение становится выше некоторого предела. Это необходимо сделать, поскольку на выходе вместо 12 В нам необходимо получить 14, 4. Встроенные защитные блоки воспринимают это как перенапряжение, и блок питания автоматически отключается.

Оказывается, сигналы действия защиты и «включение-отключение» проходят через один оптрон. Всего оптрона в устройстве три – они нужны для связи входной и выходной части блока питания. Для того чтобы блок работал постоянно и не был чувствителен к перенапряжению на выходе, нужно замкнуть контакты определенного оптрона с помощью перемычки. Теперь данный оптрон будет всегда находиться в включенном состоянии. Таким образом, блок питания теперь будет работать постоянно при подключении к сети вне зависимости от напряжения на входе.

Теперь установим на выходе блока питания напряжение в 14, 4В. Если заменить напряжение на выходе не удается при помощи подстроечного резистора, расположенного на дополнительной плате, то нужно заменить резистор, который подключен последовательно с подстроечным на резистором 2,7 кОм. Диапазон настройки таким образом сместится в большую сторону.

Теперь нужно удалить транзистор, который находится рядом с TL 431. Его предназначение нам неизвестно, но он может препятствовать работе самой микросхемы. Чтобы сделать выходное напряжение стабильным в холостом режиме, нужно на выходе блока добавить небольшую нагрузку по каналу 12 В и по каналу 5 В. Для дополнительной нагрузки по каналу +12В подойдет резистор на 200 Ом, а для канала +5В – на 68 Ом. Выходное напряжение на холостом ходу следует регулировать только после установки данных резисторов.

www.vsedelkin.ru

ЗАРЯДНОЕ ИЗ БЛОКА ПИТАНИЯ КОМПЬЮТЕРА


    Схема простой переделки блока питания ATX, для возможности использовать его как зарядное устройство автоаккумулятора. После переделки получится мощный блок питания с регулировкой напряжения в пределах 0–22 В и тока 0–10 А. Нам понадобится обычный компьютерный БП ATX сделанный на микросхеме TL494. Для пуска никуда не подключенного БП типа АТХ необходимо на секунду закоротить зеленый и черный провода.

   Выпаиваем из него всю выпрямительную часть и всё, что соединено с ножками 1, 2 и 3 микросхемы TL494. Кроме того, нужно отсоединить от схемы ножки 15 и 16 – это второй усилитель ошибки, который мы используем для канала стабилизации тока. Также нужно выпаять цепь питания, соединяющую выходную обмотку силового трансформатора от + питания TL494 , она будет питаться только от маленького «дежурного» преобразователя, чтобы не зависеть от выходного напряжения БП (у него есть выходы 5 В и 12 В). Дежурку лучше немного перенастроить подобрав делитель напряжения в обратной связи и получив напряжения 20 В для питания ШИМ и 9 В для питания измерительно-регулировочной схемы. Приводим принципиальную схему доработки:

   Выпрямительные диоды соединяем с 12-вольтовыми отводами вторичной обмотки силового трансформатора. Лучше поставить диоды помощнее, чем те, которые обычно стоят в 12-вольтовой цепи. Дроссель L1 делаем из кольца от фильтра групповой стабилизации. Они разные по типоразмеру в некоторых БП поэтому намотка может отличатся. У меня получилось12 витков проводом диаметра 2 мм. Дроссель L2 берём из цепи 12 Вольт. На микросхеме ОУ LM358 (LM2904, или любой другой сдвоенный низковольтный операционник, который может работать в однополярном включении и при входных напряжениях почти от 0 В) собран измерительный усилитель выходного напряжения и тока, который будет давать сигналы управления на ШИМ TL494. Резисторы VR1 и VR2 задают опорные напряжения. Переменный резистор VR1 регулирует выходное напряжение, VR2 – ток. Токоизмерительный резистор R7 на 0.05 ом. Питание для ОУ берём с выхода «дежурных» 9В БП компьютера. Нагрузка подключается к OUT+ и OUT-. В качестве вольтметра и амперметра можно использовать стрелочные приборы. Если регулировка тока в какой-то момент не нужна, то VR2 просто выкручиваем на максимум. Работа стабилизатора в БП будет так: если, например, установлено 12 В 1 А, то если ток нагрузки меньше 1 А – стабилизируется напряжение, если больше – то ток. В принципе, можно перемотать и выходной силовой трансформатор, выкинутся лишние обмотки и можно уложить более мощную. При этом также рекомендую и выходные транзисторы поставить на больший ток.

   На выходе нагрузочный резистор где-то на 250 ом 2 Вт параллельно C5. Он нужен чтобы блок питания без нагрузки не оставался. Ток через него не учитывается, он до измерительного резистора R7 (шунта) включён. Теоретически можно получить до 25 вольт при токе в 10 А. Заряжать устройством можно как обычные 12 В аккумуляторы от автомобиля, так и небольшие свинцовые, что стоят в ИБП.

Поделитесь полезными схемами


РЕГУЛЯТОР МОЩНОСТИ НА СИМИСТОРЕ

   Простой регулятор мощности на симисторе и динисторе DB-3 — классическая, проверенная 1000 раз схема. Плюс ещё один вариант, без использования редких деталей.


ДОРАБОТКА ПИТАНИЯ ЧАСОВ

   У многих имеются стоят простые настольные электронные часы с большим ЖКИ дисплеем и питающимися от небольшого дискового литий ионного элемента на три вольта. Часы хороши всем — и небольшая цена, и надёжность, и многофункциональность. Но вот одна проблема — периодически приходится менять элемент питания. Вроде ничего сложного тут нет, но во первых — батарейка садится как правило в самый неподходящий момент, а во вторых — стоит она почти половину цены самих часов.


СХЕМА САМОДЕЛЬНОГО ЛАЗЕРА

   Берем две пальчиковые батарейки и через резистор в 5 ом подключаем к диоду. Минус напрямую подключаем к среднему выводу диода, плюс сначала левому , потом правому выводу (можно и наоборот) и смотрим, пока лазер слегка не засветится красным светом. 



ИМПУЛЬСНЫЕ ИСТОЧНИКИ ПИТАНИЯ

   Известно, что источники электропитания являются неотъемлемой частью радиотехнических устройств, к которым предъявляется целый ряд требований; они представляют собой комплекс элементов, приборов и аппаратов, вырабатывающих электрическую энергию и преобразующих ее к виду, необходимому для обеспечения требуемых условий работы радиоустройств.

samodelnie.ru