Осциллограф своими руками из монитора – Как сделать цифровой осциллограф из компьютера своими руками?(часть 1) — Измерительная техника — Инструменты

Содержание

Цифровой осциллограф своими руками | Мастер Винтик. Всё своими руками!

Осциллограф — это незаменимый помощник в мастерской радиолюбителя. С его помощью можно наблюдать форму сигнала, измерить длительность, частоту, амплитуду. Цифровой осциллограф способен запомнить изображение на экране, выводить на экран сопутствующую информацию о сигнале и многое другое.

Стоит осциллограф дорого, особенно цифровой, а вот сделать его из набора не сложно и не дорого.

Как-то на днях купил я недорого набор для сборки цифрового осциллографа в китайском интернет магазине GEARBEST

Набор пришёл довольно быстро (около 2 нед) с подробной инструкцией, схемой на английском. Было всё понятно, т.к. описание в картинках подробно расписано шаг за шагом.

Принципиальная схема цифрового осциллографа DSO 138

Характеристики осциллографа

ОсновныеМодель: DSO138

Тип: набор DIY цифровой осциллограф

Материал: PCB плата, 2,4″ дисплей + все необходимые компоненты

Входное напряжение: DC 9V (стабилизированное)

Ток потребления: 120 мА

Ширина полосы входного сигнала: 0-200KHz

Чувствительность: 10 мВ / дел — 5В / Div (1 — 2 — 5 прогрессивный способ) электронное регулируемое вертикальное смещение

Частота дискретизации: 1Msps

Входное сопротивление: 1MОм

Макс. входное напряжение: 50Vpp (1:1 щуп)

Буфер: 1024 Bytes

Диапазон времени: 10 микросекунд / Div — 50s / Div (1 — 2 — 5 прогрессивный способ)

Точность: 12 бит

РазмерыРазмер экрана: 52 х 40 мм

Размер печатной платы: 117 х 76 мм

Вес и размер упаковкиВес продукта: 0,120 кг

Вес упаковки: 0,50 кг

Размер продукта (Д х Ш х В ) : 10 х 5 х 2 см

Размер упаковки (Д х Ш х В ) : 13,5 х 7,5 х 9,0 см

Подробное описание сборки набора осциллографа

Этот набор сложнее, чем рассматриваемый ранее набор частотомера, но при аккуратной и внимательной сборке работает сразу без проблем.

На печатной плате уже был припаян прошитый микроконтроллер. Это 32 битный микроконтроллер, базирующийся на ARM 32-bit Cortex™ — M3 ядре. Максимальная частота работы 72 МГц, также он имеет 2 x 12-bit, 1 μs АЦП. Есть в других наборах уже впаяны все smd детали. В моём только микроконтроллер, но остальные я сам впаял без особого труда остро заточенным паяльником и в очках с подсветкой. Все smd детали были по количеству на одну больше для запаса на случай потери такой крохотульки 🙂

Шаг 1.

Чтобы было удобнее, пока на плате нет других деталей, первым делом я впаял все smd компоненты. Микроконтроллер (квадратик с выводами четырёх сторон), как я писал, был уже впаян.

Паяем аккуратно и не перегреваем микросхемы. Держать паяльник на одной ножке не более 2 сек! Используем припой (тонкая проволока с канифолью внутри) и паяльную пасту. Следим чтобы не перемыкали вывода между собой и в тоже время хорошо припаяны к контактным площадкам.

Шаг 2.

Далее я припаял все пассивные компоненты (сопротивления, дросселя и конденсаторы).

Тут без особых комментариев. Вставляем деталь согласно прилагаемой инструкции в печатную плату, обрезаем лишний отрезок вывода и хорошо припаиваем. Вокруг контактных площадок с обратной стороны платы близко подходит экранный слой. Поэтому паяйте аккуратно, чтобы припой не замкнул на экранный слой и соседние дорожки.

Немного о маркировке керамических конденсаторов: эти конденсаторы маркируются также как и резисторы. Первые две цифры — это число, третья цифра — количество нулей после числа. Например 121 — это 120 пф, 203 — это 22 000 пф или 22нф, 104 — это 100000 пф или 100 нф или 0,1 мкф.

У электролитических конденсаторов есть полярность. Не путаем + и !

Шаг 3.

Далее паяем всё оставшееся: диоды, транзисторы, кварц, светодиод, кнопки, разъёмы, переключатели…

При пайке транзисторов и диодов, так же как и микросхемы — не перегреваем! Держать паяльник на одной ножке не более 2-3 сек!

Диоды имеют катод и анод, поэтому при пайке смотрим на кольцо с одного краю (это катод). Не путаем так же установку транзисторов! Внимательно смотрим маркировку, они похожи на микросхемы — стабилизаторы 78L05 и 79L05

Разъёмы и переключатели хоть и блестят, но паяются плохо. Я предварительно зачистил ножки мелкой наждачкой.

При пайке кварца надо немного приподнять от платы, т.к. он металлический и может замкнуть контактные площадки. Можно подложить под него диэлектрик.

Шаг 4.

К плате дисплея нужно припаять только три разъёма.

После того как всё припаяно промываем плату спиртом не нужной зубной щёткой или ватным диском.

Шаг 5.

После того как плату просушили, ещё раз проверяем качество пайки.

После перед под соединением дисплея к основной плате припаяем две перемычки. Сделать их можно из откусанных выводов.

Шаг 6.

Подключаем питание. Источник питания: постоянное стабилизированное напряжение 9 В с максимальным током не менее 200 мА.

  1. Проверяем соответствия на разъёме 9 В.
  2. Проверяем в контрольной точке 3,3 В.
  3. Если всё нормально, выключаем питание и устанавливаем перемычку JP4.

Шаг 7.

Вставляем дисплей в разъёмы (3 шт).

Подключаем ко входу щуп (есть в комплекте) и включаем питание.

Если всё правильно, видим на экране сайт производителя, версию прошивки и номер дисплея:

Далее, через несколько секунд появляется шкала и синусоида, даже при не подключенных никуда щупе и включенном переключателе на максимальную чувствительность — 10мВ

Вверху два разъёма: вход сигнала и питание.

Слева находятся переключатели: измерение постоянной и переменной составляющей (открытый и закрытый вход).

Второй и третий переключатели — входной аттенюатор прибора (чувствительность) и аттенюатор после входного усилителя. Они позволяют выбрать масштаб по оси напряжения. Если выбран 1 Вольт, то это означает, что в этом режиме размах в одну масштабную клетку экрана будет равен напряжению в 1 Вольт.

С помощью второго переключателя выбираем напряжение, а третьего множитель. При помощи этих переключателей можно выбрать девять фиксированных уровней входного напряжения (от 10 мВ до 5 В).

Светодиод — индикатор наличия и синхронизации сигнала.

Справа — кнопки управления: запоминание, выбор, установки параметров (смещение, синхронизация, размах). Все изменения отображаются на экране по кругу. Нижняя кнопка — сброс.

Таблица напряжений в контрольных точках

Подстроечными конденсаторами устанавливаем правильную форму отображаемого сигнала. Для этого нужно подать источник прямоугольных импульсов. Лучше это сделать один раз с фабричного генератора стандартных сигналов. Можно подать сигнал от внутреннего генератора (фото ниже). Для этого подсоединяем красный «крокодил» щупа на перемычку J2 (вверху платы). Конденсаторами выравниваем чёткие прямоугольные формы.

Надеюсь, что обзор данного конструктора-осциллографа был интересен и окажется полезным при сборке. Удачи!

А.В.Зотов, Волгоградская обл.

Кто заинтересовался набором можете пройти на сайт магазина: GEARBEST.com

В этой статье подробно написано, о том как купать товары в китайском интернет-магазине.

П О П У Л Я Р Н О Е:

  • Какой планшет лучше купить?
  • Планшетный компьютер (планшетник) — это практически полноценный персональный компьютер, с возможностью подключения мыши и клавиатуры. Такие планшеты работают под операционными системами: Windows, MacOS X, Android и вполне совместимы с обычными настольными компьютерами. Такие устройства сейчас всё большей популярностью становятся, особенно у детей. Они будут отличным выбором для рабочего использования, учёбы и конечно, для игр.

    Подробнее…

  • Как удалить вирус “Trojan-Downloader.Win32.AutoIt.fn” (csrcs.exe) и Webalta?
  • Вирус “Trojan-Downloader.Win32.AutoIt.fn” (csrcs.exe) – троянская программа, нарушающая работоспособность компьютера, написанная в виде приложения Windows (PE EXE-файл). Троянец содержит в себе встроенного IRC-бота, с помощью которого «кто-то» может получить доступ к компьютеру пользователя. Заразив компьютер, вирус, используя локальную сеть, старается размножить себя по всем доступным сетевым ресурсам. Подробнее…

  • Всё о косе
  • Большинство людей, содержащих скот в приусадебных хозяйствах пользуются ручной косой. Без основных, выработанных веками «крестьянских хитростей» пользования традиционным сельскохозяйственным орудием косой не обойтись и современному косарю. Подробнее…

>>

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ:

Популярность: 11 937 просм.

www.mastervintik.ru

Осциллограф из старого телевизора | Мастер-класс своими руками



В интернете размещены различные инструкции по превращению старого (порой частично нерабочего) телевизора в широкоэкранный осциллограф. Эта статья также расскажет, как создать достойный электронный прибор, используя несложную доработку общей стоимостью около 20$. Чтобы входной сигнал отображался на экране и воспроизводился через динамик телевизора, понадобится собрать несложное устройство, коммутирующее схему питания отклоняющей системы. Большой частотный спектр на таком приборе, конечно, не вытянешь (реально 20-20000 кГц), но отслеживать НЧ-колебания вполне доступно.

Смотрите видео


Можно также установить в телевизионный корпус основные разъемы и элементы управления прибором (благо, место это позволяет). Например, наличие разъема RCA станет прекрасной возможностью подключать iPod и в то же время позволит подачу входных сигналов переменного напряжения от милливольт до сотен вольт. Поблизости можно разместить подстроечное сопротивление на 1 мОм и 6-ти секционный поворотный переключатель. Небольшим триммером будет удобно контролировать горизонтальную частоту развертки, а яркая красная кнопка подойдет для включения прибора.

Остается добавить, что данная схема подключения подойдет не для всех моделей телевизоров и больше полезна для людей, умеющих обращаться со схемотехникой и имеющих опыт в электронике. Но сама идея содержит много интересных моментов.

Требования безопасности

Реализация описываемого проекта предполагает проведение работ рядом с открытым телевизионным трансформатором и высоковольтными конденсаторами. Напряжение на магнетроне достигает 120 кВ! Чтобы исключить вероятность смертельного поражения электрическим током, нужно строго соблюдать надлежащие меры безопасности. Первым шагом к выполнению любых действий должно быть полное обесточивание прибора. Тут нельзя забывать и про высоковольтные конденсаторы. Поэтому защитный кожух высоковольтного блока снимается крайне осторожно. Важно не повредить проводов печатной платы и не прикоснуться к ее открытым контактам.



Далее нужно принудительно разрядить большие емкости (50 В и более). Это делается хорошо изолированной отверткой или пинцетом. Их контакты замыкаются между собой либо на корпус до полного разряда. Не стоит это делать на печатной плате, так как могут выгореть дорожки. Выполняя работы или испытывая прибор, позаботьтесь, чтобы недалеко находился кто-то из ваших близких, способный вызвать врача или оказать первую помощь.

Принцип работы

Телевизоры с электронно-лучевыми трубками (ЭЛТ) и осциллографы считаются наиболее взаимозаменяемыми устройствами. Также телевизионный приемник более сложен, чем базовый лабораторный осциллограф. Для его переделки достаточно избавится от некоторых, заложенных в нем функций TV и добавить несложный усилитель. Ведь каждую разворачиваемую строку экрана телевизора создает электронный пучок, быстро сканируемый через прозрачный материал люминесцентной подложки трубки.


Заряженными электронами управляют электрические и магнитные поля, создаваемые катушками, расположенными позади трубки. Эти сердечники с проводом отклоняют луч в горизонтальной и вертикальной плоскости, контролируя расположение изображения на экране. Для настройки его по центру линии осциллографа, с ними необходимо произвести определенную доработку.



Вспоминаем, что видеосигнал выдает в секунду 32 кадра, каждый из которых состоит из двух «чересстрочных» изображений (то есть сканируется 64 кадра). Стандарт NTSC определяет 525 строк в формате экрана, другие стандарты чуть отличные значения. Значит, для воспроизводства на экране заполненной картинки, требуется отклонение электронного луча по вертикали каждые 1/64 секунды (частота 64 Гц), а по горизонтали 1/(64х525) секунды (частота 32000Гц). Для обеспечения таких значений напряжение строчного трансформатора превышает 15000 вольт. В этом случае прибор работает как телевизор, и создает развернутое изображение на экране.

Чтобы заставить его нарисовать изображение на очень тонкой линии, вертикально отклоненной входным сигналом, нужно скорректировать количество витков экранных катушек. Также важно «поработать» с катушкой индуктора. Ее импедансное сопротивление зависит от частоты. Чем выше будет частота, тем труднее будет отобразить ее на экране. При внешнем диаметре тороидального сердечника 10 мм и толщине 2 мм, обмотки I и III должны содержать по 100 витков провода ПЭЛШО 0.1, а обмотка II – 30 витков.

Еще стоит помнить, что сигнал в телевизоре математически интегрирован. Это приводит к тому, что входная прямоугольная волна будет отображаться на экране треугольной, а треугольная – синусоидой. Это касается только изображения, но не звука. Синусоидальные волны будут отображены без искажений. Явление не будет столь заметно в очень старых телевизорах, способных отображать белый шум либо синий экран при отсутствии сигнала, а не отключающих автоматически изображение.

Удаление лишних узлов

В нашем случае использовался старый телевизионный приемник с 15-и дюймовым экраном и классическим UHF/VHF тюнером. Для создания осциллографа он не требуется, поэтому тюнер можно сразу удалить и забыть о его существовании. Также можно постепенно отключить один за другим лишние модули, проверяя, чтобы телевизор мог по-прежнему функционировать. Понадобится лишь основная плата и все, что подключено к кинескопу. Необходимо, чтобы он лишь отображал белый шум либо голубой экран. От остальных деталей можно просто освободить коробку.




На переделываемом телевизоре спереди стояло два потенциометра. Один из них служил для включения и регулировки громкости, а другой контролировал яркость. Были удалены оба: первый был заменен выключателем питания (большой красной кнопкой), второй пришлось установить на максимальную яркость и зафиксировать ее впайкой дополнительных сопротивлений в схему. Сразу стоит обратить внимание, что устройство со встроенным регулятором громкости для переделки не годится. Он усиливает сигнал, прикрепленный к телевизионному и искать усилитель придется на основной плате, а это вызовет дополнительные проблемы. Динамики на данном этапе также можно отключить.

Подготовка отклоняющей системы

Чтобы добиться на экране кинескопа картинки осциллографа, понадобится подать на отклоняющие катушки H и V сгенерированный усиленный сигнал кадровых и строчных синхроимпульсов. Как его получить, будет разобрано чуть позднее, а сейчас необходимо подготовить отклоняющую систему. Катушки подключены к основной плате на четыре штырька. Нужно отключить горизонтальную, к ней идут красный и синий провод. Подключив iPod либо компьютер непосредственно на эти выводы, можно получить на экране кинескопа отображение музыки. Вертикальная катушка имеет желтый и оранжевый провод, но для получения сканирования 64 Гц их нужно переключить на горизонтальную катушку.


Теперь нужно найти, где катушки подключаются к небольшой монтажной плате на трубке кинескопа. Если телевизионный приемник не очень новый, катушки только две и от них отходит 4 провода к основной плате. В противном случае катушек будет больше и в таком виде переделка работать не будет. Но не стоит бросать начатое, и можно немного поэкспериментировать. Пока же будем считать, что проводов все же 4. Осталось разобраться с проводами, идущими к кинескопу. По правилу правой руки (F=qVxB) снимаем один из них в случайном порядке. Если при включении прибора на экране отобразилась горизонтальная линия, отключена вертикальная катушка, если вертикальная, то наоборот. Соответствующие концы находятся тестером и помечаются.

Теперь провода подключения горизонтальной катушки снимаются с главной печатной платы. Не стоит забывать, что дело придется иметь с частотой 30000 Гц и напряжением более 15000 вольт. Будущему осциллографу они не нужны. Перед касанием их необходимо закоротить, потом хорошо заизолировать и разместить внутри корпуса так, чтобы они ничего не касались после включения прибора. Итак, вертикальная разметочная линия 60 Гц готова. Для получения такой же горизонтальной линии 60 Гц, два оставшихся провода, идущих на вертикальную катушку, подпаиваем к горизонтальной. А вертикальная станет входом осциллографа для подключения схемы усилителя.

Настройка развертки

Дальнейшая часть работ наиболее опасна, так как будет выполняться при подключенном напряжении. Будьте особенно осторожны! Пробуем подключить источник сигнала на вертикальную отклоняющую катушку (это может быть МР3 плейер либо компьютерный выход на наушники). Чтобы отображалась одна частота на экране, постарайтесь генерировать стабильную тональность. При включенном телевизоре изолированной отверткой аккуратно потрогайте поочередно высоковольтные провода, выяснив, к каким изменениям на экране это приведет (за этим должен наблюдать ваш помощник или воспользуйтесь большим зеркалом).




Один из них будет влиять на частоту сканирования. На плате, где он заходит, нужно впаять подстроечное сопротивление (примерно 50-60 кОм). Убедившись в работоспособности узла, можно вывести ручку задействованного резистора из корпуса прибора. Даже безукоризненно выполненная горизонтальная частотная настройка не позволит видеть верхний диапазон, а лишь выведет форму волны прокрутки на экран. Также можно настроить имеющиеся кольцевые вкладки, расположенные вокруг узкой части трубы кинескопа. Обычно они имеют черный или темно серый цвет и также косвенно управляют конечным изображением.

Усиление входящего сигнала

Все, что было сделано до этого момента, позволило нам создать неплохой визуализатор входного сигнала. Достаточно гнездо для подключения iPod соединить с катушкой вертикального отклонения и звучащая музыка отобразится на экране. Но чтобы получить настоящий осциллограф, понадобится дополнительный усилитель (собрать его можно там, где размещался выброшенный UHF/VHF тюнер). Его идея была заимствована с нескольких тематических сайтов, с целью получения минимальной себестоимости и максимальной эффективности. За основу бралась разработка Павла Фальстада, а представленная печатная плата — доработанная схема двухтактного аудио усилителя.

Для его реализации нам понадобится: микросборка TL082, включающая 2 ОУ, пара транзисторов (например, 41НПН/42ПНП), регулятор мощности LM317, поворотный переключатель «Полюс», потенциометр 1 мОм, два тримера на 10 кОм, 4 диода на 1А, трансформатор на 30 В переменного напряжения, электролит 1000 мкФ 50 В, два электролита 470 мкФ 16 В и 5 резисторов (10 Ом, 220 Ом, 1 кОм, 100 кОм и 10 мОм).




Первым ОУ контролируется усиление входного сигнала по формуле R1/R2, где R1 – сопротивление, выбранное поворотным переключателем, R2 – горшок 1 мОм. Теоретически он способен усилить входной сигнал до 1 млн. раз (при имеющемся на вращающемся переключателе минимуме 1 Ом). Второй отслеживает, чтобы транзисторы получали необходимое напряжение для открытия переходов и компенсирует перекосы. Им нужно 0.7 В на раскрытие и 1.4 В на переключение.

Готовая схема требует обязательной калибровки. Регулятор мощности рассчитан на разницу в 30 В, поэтому ОУ стандартно выдаст +15/-15 В, но для хорошей фильтрации его выход должен быть на несколько вольт ниже, чем напряжение на емкости в 1000 мкФ. Для этого существует триммер 1. Выход цепи подключается к горизонтальной катушке отклонения. Музыка, пропускаемая через схему, начинает «обрезаться» сверху/снизу. Чтобы избежать этого, триммер 2 регулируют до тех пор, пока верхние части клипов не коснутся границ экрана. Это понизит напряжение и не даст транзисторам перегрузить ВЧ-тракт прибора (сжечь катушку отклонения).

Теперь можно подключить на выход телевизора встроенную акустическую систему. При чрезмерной громкости добавляют большое сопротивление нагрузки (например, 10 Ом 1 Вт), при недостатке звука сопротивление нагрузки ставят на отклоняющую катушку, после чего последнюю перекалибровывают. Чтобы защитить себя от излишних раздражающих звуковых сигналов в процессе просматривания необходимого сигнала входа, на динамик можно установить выключатель.

Сборка все вместе

Дополнительный усилитель может генерировать сильное магнитное поле, поэтому стоит позаботиться о его конструкции. Плата должна выполняться максимально компактно, с короткими выводами проводников и хорошей группировкой. Специального экранирования ей не требуется, но во избежание помех для других телевизоров вашего дома позаботьтесь, чтобы она была расположена в корпусе, не создавая наводок основным узлам. В крайнем случае можно использовать деревянный либо пластмассовый корпус, оклеенный изнутри фольгой.



В разбираемом телевизоре при удалении аналогового тюнера освободилось достаточно места для установки трансформатора с такой платой и даже подошло отверстие под переключатель мощности. Трансформатор желательно также экранировать, чтобы не создавать помех по ТВ-каналам. Клеммы для подключения напряжения синхронизации и исследуемого сигнала соединяйте с платой только экранированным проводом.

После подключения трансформатора к цепи, подключаем S1 и S2 соответственно, запускаем входные провода через отверстие в корпусе телевизионного приемника, подключаем выход цепи к динамику и катушке отклонения. Следует использовать минимальную длину провода во всех проводимых соединениях, чтобы уменьшить рассеянную индуктивность контура. Осталось найти удобное место установки S1 и S2, закрыть заднюю крышку и приступить к тест-драйву.

Проверка работоспособности прибора

По своему функционалу собранный осциллограф далек от достойных лабораторных моделей, но незаменим для использования в несложных проектах, где требуется увидеть форму волны. Также определенную новизну имеет возможность слышать исследуемый сигнал, особенно при получении обратной связи, напоминающей «знаки». В рассматриваемом примере можно наблюдать изменение сигнала, наводимого обычной проволочной катушкой при ее расположении в произвольном месте, над внутренним трансформатором прибора и в момент нахождения над процессором ноутбука.

Возможность усиливать входящий сигнал – отличная функция, если вам не требуется его абсолютно точных параметров. Шум частоты 60 Гц, усиливаемый схемой, может пока определяться с достаточной погрешностью. Но это явление вызывает и блуждающая индуктивность входного провода. Уменьшить помехи может только экранированное заземление всех частей схемы.



Демонстрируемая катушка с проводом, соединенная со входом прибора, позволяет использовать большую индуктивность при сильном усилении. Ей можно обнаружить источники питания за несколько метров, направляя катушку в сторону расположения трансформаторов, после чего наглядно просмотреть их работу. Также можно обнаружить расположение процессора внутри сложного девайса. Можно использовать катушку, как индуктивный микрофон, поместив ее около динамика, играющего музыку. Магнитное поле, воспроизводимое катушкой диктора, будет обнаружено и усилено созданным прибором, после чего на кинескопе осциллографа отразится играемая музыка.

Можно наглядно просмотреть на приборе и работу канала интернета. В качестве входного сигнала для этого была задействована выделенная домашняя линия (120 VAC), и, показав ее «картинку», прибор по-прежнему работает.
Original article in English

sdelaysam-svoimirukami.ru

Как сделать цифровой осциллограф из компьютера своими руками?(часть 2) — Измерительная техника — Инструменты

ПРОДОЛЖЕНИЕ:

Подбор резисторов.

   Другой способ – подбор пар резисторов. Точность обеспечивается за счёт подбора пар резисторов из двух комплектов резисторов с большим разбросом. Сначала все резисторы промеряются, а затем подбираются пары, сумма сопротивлений которых наиболее соответствует схеме. 
      Именно этим способом, в промышленных масштабах, подгонялись резисторы делителя для легендарного тестера «ТЛ-4».
Недостаток метода – трудоёмкость и потребность в большом количестве резисторов.
Чем длиннее список резисторов, тем выше точность подбора.

Подгонка резисторов при помощи наждачной бумаги.

 Подгонкой резисторов, путём удаления части резистивной плёнки, не брезгует даже промышленность.
Однако при подгонке высокоомных резисторов не допускается прорезать резистивную плёнку насквозь. У высокоомных плёночных резисторов МЛТ, плёнка нанесена на цилиндрическую поверхность в виде спирали. Подпиливать такие резисторы нужно крайне осторожно, чтобы не разорвать цепь.
Точную подгонку резисторов в любительских условиях можно осуществить при помощи самой мелкой наждачной бумаги – «нулёвки».

 Сначала с резистора МЛТ, у которого заведомо меньшее сопротивление, при помощи скальпеля аккуратно удаляется защитный слой краски.

  Затем резистор подпаивается к «концам», которые подключаются к мультиметру. Осторожными движениями шкурки-«нулёвки» сопротивление резистора доводится до нормы. Когда резистор подогнан, место пропила покрывается слоем защитного лака или клея. 
На мой взгляд, это самый быстрый и простой способ, который, тем не менее, даёт очень хорошие результаты.

Конструкция и детали.

  Элементы схемы адаптера размещены в прямоугольном дюралюминиевом корпусе.
Переключение коэффициента деления аттенюатора осуществляется тумблером со средним положением.

   В качестве входного гнезда применён стандартный разъём СР-50, что позволяет использовать стандартные кабели и щупы. Вместо него можно применить обычное аудио гнездо типа Джек (Jack) 3,5мм.  
    Выходной разъём – стандартное аудио гнездо 3,5мм. Адаптер соединяется с линейным входом аудиокарты при помощи кабеля с двумя Джеками 3,5мм на концах.

 Сборка произведена методом навесного монтажа

 Для использования осциллографа понадобится ещё кабель со щупом на конце.
Как его изготовить подробно будет описано в другом мануале в ближайшее время под названием «Как изготовить кабель-щуп для низкочастотного виртуального осциллографа?«

Как откалибровать виртуальный осциллограф?

Чтобы произвести калибровку осциллографа, нужно иметь хоть какой-нибудь измерительный прибор. Подойдёт любой стрелочный тестер или цифровой мультиметр, которому Вы доверяете.

В связи с тем, что у некоторых тестеров слишком высокая погрешность при измерении переменного напряжения до 1-го Вольта, калибровку производим при максимально возможном, но неограниченном по амплитуде, напряжении.

Перед калибровкой производим следующие настройки.

Отключаем эквалайзер аудиокарты.

 “Уровень линейного выхода”, “Уровень WAVE”, “Уровень линейного входа” и “Уровень записи” устанавливаем в положение максимального усиления. Это обеспечит повторяемость результата при дальнейших измерениях.

  Сбросив на всякий случай настройки генератора командой Command > Get Generator Default Setting, устанавливаем «Gain» (уровень) в 0db.
Выбираем частоту генератора 50Hz переключателем «Frequency Presets» (предустановки), так как все любительские приборы для измерения переменного напряжения умеют работать на этой частоте, да и наш адаптер пока не может корректно работать на более высоких частотах.

Переключаем вход адаптера в режим 1:1.

Глядя на экран осциллографа, подбираем при помощи ручки генератора «Плавно» (Trim) максимальный неограниченный уровень сигнала.
Сигнал может ограничиваться, как на входе аудиокарты, так и на её выходе, при этом точность калибровки может существенно снизиться. В «AudioTester-е» даже имеется специальный индикатор перегрузки, который выделен на скриншоте красным цветом. 
Замеряем тестером напряжение на выходе генератора и рассчитываем величину соответствующего ему амплитудного значения.

Пример.
Показание вольтметра = 1,43 Вольта (действующее).
Получаем амплитудное значение.
1,432*√2 = 2,025 (Вольт)

    Команда “Options > Calibrate” вызывает окно калибровки “AudioTester-а”.
И хотя возле окошка ввода указана размерность в «mVrms», что по идее должно означать среднеквадратичное значение, в реальности, в осциллографе «oszi v2.0c» из комплекта «AudioTester-а», вводимые значения соответствуют… непонятно чему. Что, правда, вовсе не мешает точно откалибровать прибор.
Путём ввода значений с небольшим шагом можно точно подогнать размер изображения синусоиды под вычисленное выше амплитудное значение.
На картинке видно, что амплитуда сигнала уложилась чуть больше, чем в два деления, что соответствует 2,02 Вольта.
Точность отображения амплитуды сигналов, полученных с входов 1:20 и 1:100 будет зависеть от точности подбора соответствующих резисторов делителя.

  При калибровке осциллографа «Авангард», полученные при измерении тестером значения также нужно умножить на √2, так как и вольтметр, и калибратор «Авангард-а» рассчитан на амплитудные значения.
Вносим полученное значение в окошко калибровки в милливольтах – 2025 и нажимаем Enter.
Чтобы откалибровать второй диапазон осциллографа «Авангард», который отмечен, как «250», нужно сначала рассчитать реальный коэффициент деления, сравнив показания встроенного вольтметра в двух диапазонах делителя: 1:1 и 1:20. Вольтметр осциллографа, при этом должен находиться в положении «12,5»

Пример.
122 / 2323 = 19,3

  Затем нужно подправить файл «calibr», который можно открыть в блокноте (Notepad-е). Слева файл до правки, а справа – после. 
Файл «calibr» находится в той же самой директории, где расположена текущая копия программы. 
В восьмую строчку вносим реальный коэффициент деления, соответствующий делителю первого (левого) канала. 
Если вы построили двухканальный адаптер, то в девятую строчку вносим поправку для второго (правого) канала.

Как выровнять амплитудно-частотную характеристику адаптера?

 Линейный вход аудиокарты, да и сами цепи адаптера обладают некоторой входной ёмкостью. Реактивное сопротивление этой ёмкости изменяет коэффициент деления делителя на высоких частотах.

 Чтобы выровнять частотную характеристику адаптера в диапазоне 1:1, нужно подобрать ёмкость конденсатора C1 так, чтобы амплитуда сигнала на частоте 50 Гц была равна амплитуде сигнала частотой 18-20 кГц.

 Резисторы R2 и R3 снижают влияние входной ёмкости и создают подъём частотной характеристики в области высоких частот. Компенсировать этот подъём можно путём подбора конденсаторов С2 и С3 в соответствующих диапазонах 1:20 и 1:100.
У подобрал следующие ёмкости: C1 – 39pF, C2 – 10nF, C3 – 0,1nF.

  Теперь, когда канал Y верикального отклонения осциллографа откалиброван и линеаризован, можно увидеть, как выглядят те или иные периодические, и не только, сигналы. В «AudioTester-e» есть «ждущая синхронизация развёртки».

Что делать, если нет тестера? Или опасные опыты.

Можно ли использовать для калибровки осветительную сеть?

Так как любой уважающий себя радиолюбитель, несмотря на все предупреждения, первым делом пытается залезть своим детищем в розетку, я счёл необходимым рассказать об этом опасном занятии подробнее.
     По ГОСТу напряжение сети не должно выходить за пределы 220 Вольт – 10% +5%, хотя, в реальной жизни, это условие соблюдается не так часто, как хотелось бы. Ошибки измерений в процессе подгонке резисторов и замерах импеданса также могут привнести высокие погрешности при данном способе калибровки. 
     Если Вы собрали прецизионный делитель, например, на высокоточных резисторах, и если известно, что в вашем доме напряжение в осветительной сети поддерживается с достаточной точностью, то её можно использовать для грубой калибровки осциллографа. 
Но, есть очень много НО, из-за которых, я Вам категорически не рекомендую это делать. Первое и наиболее важное «НО», это сам факт того, что Вы читаете эту статью. Тот, кто на ты с электричеством, вряд ли стал бы тратить на это время. Но, если и это не аргумент… 

Самое главное! 

 1. Компьютер должен быть надёжно заземлён!!!
2. Ни под каким предлогом не суйте в розетку «земляной» провод! Это тот провод, который соединён через корпус разъёма линейного входа с корпусом системного блока!!! (Другие названия этого провода: масса, корпус, общий, экран и т.д.) Тогда, вне зависимости от того, попадёте Вы в фазу или в ноль, не произойдёт короткое замыкание. 
Другими словами, в розетку можно втыкать только провод, который соединён с резистором R1 номиналом 1 мегом, расположенном в схеме адаптера!!!
Если же Вы попытаетесь воткнуть в сеть провод, соединенный с корпусом, то в 50% случаев это приведёт к самым печальным последствиям.
Так как максимальная неограниченная амплитуда на линейном входе около 250мВ, то в положении делителя 1:100 можно будет увидеть амплитуду величиной примерно в 50… 250 Вольт (в зависимости от входного импеданса). Поэтому, для измерения напряжения сети, адаптер должен быть оборудован делителем 1: 1000. 
Делитель 1:1000 можно рассчитать по аналогии с делителем 1:100.
Пример расчёта делителя 1:1000.
Верхнее плечо делителя = 1007кОм.
Входной импеданс = 50кОм.
Коэффициента деления по входу 1:1 = 20,14.
Определяем общий коэффициент деления для входа 1:1000.
20,14*1000 = 20140 (раз) 
Рассчитываем величину резистора для делителя.
1007*50 / 50*20140 –50 –1007 ≈ 50 (Ом)

ПРОДОЛЖЕНИЕ СЛЕДУЕТ:

cxema.my1.ru

Как собрать осциллограф своими руками

Электронный осциллограф – незаменимая вещь на производстве, в домашней или учебной лаборатории. Этот измерительный прибор позволяет заглянуть в работу электронных схем, показывая на экране динамику изменения входного потенциала. Он незаменим при настройке мощных тиристорных преобразователей на производстве. Хорошо помогает при поиске неисправностей в электрических цепях контроля, защиты либо управления технологическим процессом, значительно сокращая время простоя оборудования.

Собрать осциллограф своими руками — трудновыполнимая задача для радиолюбителя, но только в том случае, если идти традиционным путем, пытаясь сымитировать работу современных измерительных приборов. Речь идет об аналоговых и цифровых устройствах, которые производятся в промышленных масштабах.

Картина радикально меняется, если в качестве вычислительного узла и визуального контроля над измеряемым напряжением использовать бытовой персональный компьютер. Быстродействующим современным процессорам под силу решить любые задачи, а большой монитор для наблюдения за измеряемым сигналом будет только плюсом. Остается только собрать небольшую схему, и вы сделаете осциллограф своими руками. Устройство не требует предварительной наладки.

Давайте рассмотрим основные части изделия. Саму схему и программу для прошивки контроллера вы легко можете найти в специализированной литературе. Как правило, устройство имеет один и более аналоговых входов. Установив регулируемый делитель на одном из них, вы сможете менять амплитуду входного сигнала. Это делается для расширения диапазона измерения устройства. В качестве защиты от превышения допустимого напряжения устанавливаем параметрический стабилизатор или любое другое устройство, ограничивающее уровень входного напряжения. Все, можно соединять аналоговые входы с входом микропроцессора, выходы которого соединены с разъемом для подключения устройства к USB-порту. Питание схемы осуществляется с помощью этого же порта.

Таким образом, мы сделали свой осциллограф своими руками, но для запуска устройства необходимо запрограммировать микроконтроллер и установить интерфейсную программу для распознавания входных сигналов на ваш компьютер. Контроллер программируется с помощью программатора и устанавливается в плату. Так же инсталлируем нужную программу на компьютер. Как вы уже догадались, вы сделали свой usb-осциллограф своими руками. Основное требование — все операции по монтажу и программированию должны быть выполнены правильно.

Как видите, цифровой осциллограф своими руками сделать несложно. Быстродействие этого прибора позволяет настраивать, ремонтировать или изучать принцип работы несложных электронных схем. Такой прибор пригодится в домашней лаборатории.

Для увеличения быстродействия устройства применяют несколько способов, но все они ведут к усложнению первоначальной схемы. Для коммутации устройства с компьютером можно использовать параллельный порт, это позволит обойти частоту дискретизации USB-порта и поднять быстродействие.

Кроме того, есть специальные платы, которые вставляются в компьютер и служат для обработки входных сигналов.

fb.ru

Как из компьютера сделать осциллограф

Главная » ПО » Как из компьютера сделать осциллограф

Осциллограф из компьютера своими руками

Как сделать цифровой осциллограф из компьютера своими руками?

Начинающим радиолюбителям посвящается!

О том, как собрать самый простой адаптер для программного виртуального осциллографа, пригодный для использования в ремонте и настройке аудиоаппаратуры. http://oldoctober.com/

В статье рассказывается также о том, как можно измерить входной и выходной импеданс и как рассчитать аттенюатор для виртуального осциллографа.

Близкие темы.

Как изготовить кабель-щуп для низкочастотного виртуального осциллографа?

Как подружить Блокнот с Калькулятором Windows, чтобы облегчить расчёты?

Как припаять штекер к экранированному кабелю.

Оглавление.

О виртуальных осциллоскопах.

Когда-то у меня была идея фикс: продать аналоговый осциллограф и купить ему на замену цифровой USB осциллоскоп. Но, прошвырнувшись по рынку, обнаружил, что самые бюджетные осциллографы «начинаются» от 250 долларов, да и отзывы о них не очень хорошие. Более же серьёзные приборы стоят в несколько раз дороже.

Так что, решил я ограничиться аналоговым осциллографом, а для построения какой-нибудь эпюры для сайта, использовать виртуальный осциллограф.

Скачал из сети несколько программных осциллографов и попытался что-нибудь померить, но ничего путного из этого не вышло, так как, либо не удавалось откалибровать прибор, либо интерфейс не годился для скриншотов.

Было, уже забросил это дело, но когда подыскивал себе программу для снятия АЧХ, наткнулся на комплект программ «AudioTester». Анализатор из этого комплекта мне не понравился, а вот осциллограф «Osсi» (далее буду его называть «AudioTester») оказался в самый раз.

Этот прибор имеет интерфейс схожий с обычным аналоговым осциллографом, а на экране есть стандартная сетка, которая позволяет измерять амплитуду и длительность. http://oldoctober.com/

Из недостатков можно назвать некоторую нестабильность работы. Программа иногда подвисает и для того, чтобы её сбросить приходится прибегать к помощи Task Manager-а. Но, всё это компенсируется привычным интерфейсом, удобством использования и некоторыми очень полезными функциями, которые я не встречал ни в одной другой программе подобного типа.

Внимание! В комплекте программ «AudioTester» есть генератор низкой частоты. Я не рекомендую его использовать, так как он пытается самостоятельно управлять драйвером аудиокарты, что может привести к необратимому отключению звука. Если Вы решите его использовать позаботьтесь о точке восстановления или о бэкапе ОС. Но, лучше скачайте нормальный генератор из «Дополнительных материалов».

Другую интересную программу виртуального осциллографа «Авангард» написал наш соотечественник Записных О.Л.

У этой программы нет привычной измерительной сетки, да и экран слишком большой для снятия скриншотов, но зато есть встроенный вольтметр амплитудных значений и частотомер, что частично компенсирует указанный выше недостаток.

Частично потому, что на малых уровнях сигнала и вольтметр и частотомер начинают сильно привирать.

Однако для начинающего радиолюбителя, который не привык воспринимать эпюры в Вольтах и миллисекундах на деление, этот осциллограф может вполне сгодиться. Другое полезное свойство осциллографа «Авангард» – возможность независимой калибровки двух имеющихся шкал встроенного вольтметра.

Так что, я расскажу о том, как построить измерительный осциллограф на базе программ «AudioTester» и «Авангард». Конечно, кроме этих программ понадобится и любая встроенная или отдельная, самая бюджетная аудиокарта.

Собственно, все работы сводятся к тому, чтобы изготовить делитель напряжения (аттенюатор), который позволил бы охватить широкий диапазон измеряемых напряжений. Другая функция предлагаемого адаптера – защита входа аудиокарты от повреждения при попадании на вход высокого напряжения.

Вернуться наверх к меню.

Технические данные и область применения.

Так как во входных цепях аудиокарты есть разделительный конденсатор, то и осциллограф может использоваться только с «закрытым входом». То есть, на его экране можно будет наблюдать только переменную составляющую сигнала. Однако, при некоторой сноровке, с помощью осциллографа «AudioTester» можно измерить и уровень постоянной составляющей. Это может пригодиться, например, когда время отсчёта мультиметра не позволяет зафиксировать амплитудное значение напряжения на конденсаторе, заряжающемся через большой резистор.

Нижний предел измеряемого напряжения ограничен уровнем шума и уровнем фона и составляет примерно 1мВ. Верхний предел ограничивается только параметрами делителя и может достигать сотен вольт.

Частотный диапазон ограничен возможностями аудиокарты и для бюджетных аудиокарт составляет: 0,1Гц… 20кГц (для синусоидального сигнала).

Конечно, речь идёт о довольно примитивном приборе, но в отсутствие более продвинутого девайса, вполне может сгодиться и этот.

Прибор может помочь в ремонте аудиоаппаратуры или использоваться в учебных целях, особенно если его дополнить виртуальным генератором НЧ. Кроме этого, с помощью виртуального осциллографа легко сохранить эпюру для иллюстрации какого-либо материала, или для размещения в Интернете.

Вернуться наверх к меню.

Электрическая схема аппаратной части осциллографа.

На чертеже изображена аппаратная часть осциллографа – «Адаптер».

Для постройки двухканального осциллографа придётся продублировать эту схему. Второй канал может пригодиться для сравнения двух сигналов или для подключения внешней синхронизации. Последнее предусмотрено в «AudioTester-е».

Резисторы R1, R2, R3 и Rвх. – делитель напряжения (аттенюатор).

Номиналы резисторов R2 и R3 зависят от применяемого виртуального осциллографа, а точнее от используемых им шкал. Но, так как у «AudioTester-а» цена деления кратна 1, 2 и 5-ти, а у «Авангард-а» встроенный вольтметр имеет всего две шкалы, связанных между собой коэффициентом 1:20, то использование адаптера, собранного по приведённой схеме не должно доставлять неудобств в обоих случаях.

Входное сопротивление аттенюатора около 1-го мегома. По-хорошему, это значение должно бы быть постоянным, но конструкция делителя при этом бы серьёзно усложнилась.

Конденсаторы C1, C2 и C3 выравнивают амплитудно-частотную характеристику адаптера.

Стабилитроны VD1 и VD2 вместе с резисторами R1 защищают линейный вход аудиокарты от повреждения в случае случайного попадания высокого напряжения на вход адаптера, когда переключатель находится в положении 1:1.

Согласен с тем, что представленная схема не отличается изящностью. Однако это схемное решение позволяет самым простым способом достичь широкого диапазона измеряемых напряжений при использовании всего нескольких радиодеталей. Аттенюатор же, построенный по классической схеме, потребовал бы применения высокомегаомных резисторов, и его входное сопротивление менялось бы слишком значительно при переключении диапазонов, что ограничило бы применение стандартных осциллографических кабелей, рассчитанных на входной импеданс 1мОм.

Вернуться наверх к меню.

Защита от «дурака».

Чтобы обезопасить линейный вход аудиокарты от случайного попадания высокого напряжения, параллельно входу установлены стабилитроны VD1 и VD2.

Резистор R1 ограничивает ток стабилитронов до 1мА, при напряжении 1000 Вольт на входе 1:1.

Если Вы, действительно, собираетесь использовать осциллограф для измерения напряжения до 1000 Вольт, то в качестве резистора R1 можно установить МЛТ-2 (двухваттный) или два МЛТ-1 (одноваттных) резистора последовательно, так как резисторы различаются не только по мощности, но и по максимально-допустимому напряжению.

Конденсатор С1 также должен иметь максимальное допустимое напряжение 1000 Вольт.

Небольшое пояснение вышесказанного. Иногда требуется взглянуть на переменную составляющую сравнительно небольшой амплитуды, которая, тем не менее, имеет большую постоянную составляющую. В таких случаях нужно иметь в виду, что на экране осциллографа с закрытым входом можно увидеть только переменную составляющую напряжения.

На картинке видно, что при постоянной составляющей 1000 Вольт и размахе переменной составляющей 500 Вольт, максимальное напряжение, приложенное к входу, будет 1500 Вольт. Хотя, на экране осциллографа мы увидим только синусоиду амплитудой 500 Вольт.

Вернуться наверх к меню.

Как измерить выходное сопротивление линейного выхода?

Этот параграф можно пропустить. Он рассчитан на любителей мелких подробностей.

Выходное сопротивление (выходной импеданс) линейного выхода, рассчитанного на подключение телефонов (наушников), слишком мало, чтобы оказать существенное влияние на точность измерений, которые нам предстоит выполнить в следующем параграфе.

Так для чего измерять выходной импеданс?

Так как мы будем использовать для калибровки осциллографа виртуальный низкочастотный сигнал-генератор, то его выходной импеданс будет равен выходному импедансу линейного выхода (Line Out) звуковой карты.

Убедившись в том, что выходной импеданс мал, мы можем предотвратить грубые ошибки при измерении входного импеданса. Хотя, даже при самом плохом стечении обстоятельств эта ошибка вряд ли превысит 3… 5%. Откровенно говоря, это даже меньше возможной ошибки измерений. Но, известно, что ошибки имеют привычку «набегать».

При использовании генератора для ремонта и настройки аудиотехники тоже желательно знать его внутренне сопротивление. Это может пригодиться, например, при измерении ESR (Equivalent Series Resistance) эквивалентного последовательного сопротивления или попросту реактивного сопротивления конденсаторов.

Мне, благодаря этому измерению, удалось выявить самый низкоомный выход в моей аудиокарте.

Если у аудиокарты всего одно выходное гнездо, то тогда всё ясно. Оно одновременно является и линейным выходом и выходом на телефоны (наушники). Его импеданс, как правило, мал, и его можно не измерять. Именно такие аудио-выходы используются в ноутбуках.

Когда же гнёзд целых шесть и есть ещё парочка на передней панели системного блока, а каждому гнезду можно назначить определённую функцию, то выходное сопротивление гнёзд может существенно отличаться.

Обычно, самый низкий импеданс соответствует гнезду салатового цвета, которое по-умолчанию и является линейным выходом.

Цвет / расположениеСостояние переключателя
Телефоны (Ом)Линейный выход (Ом)
Салатов

htfi.ru

Осциллограф хамелеон своими руками | Радиолюбительские схемы

В этой статье я хочу вам рассказать о своем опыте изготовления замечательного и популярного у радиолюбителей, осциллографического пробника Хамелеона. В сети есть много информации по нему, но все же я рассказать подробно о своем Хамелеоне.

Итак, плату решено было приобрести, так как она двусторонняя и местами дорожки довольно таки мелкие, поэтому изготовить ее в домашних условиях проблематично (хотя и возможно). Еще одна трудность это дисплей. Так как, в Хамелеоне применяется дисплей от телефона  Siemens CX65, который давным-давно снят с производства. Именно поэтому начинать изготовление следует в первую очередь с поиска дисплея. В телефонах Siemens CX65 использовались 3 типа дисплея, на контроллере LS020, LPH8836, и еще один тип который никак не подходит для Хамелеона. Самый предпочтительный первый тип дисплея (LS020), второй (LPH8836), тоже можно использовать, прошив соответствующей прошивкой контроллер, но скорость работы с этим типом дисплея меньше.

Детали для Хамелеона лучше приобрести все и сразу. Если будете приобретать плату, то часто продавцы предлагают и комплектующие к ней. Это гораздо быстрее и удобнее,  а приобретать по отдельности – та еще головная боль.  Монтаж лучше начинать с резисторов и конденсаторов, затем паять стабилитроны, транзисторы и микросхемы. Если плата у вас не заводского изготовления, а самостоятельного, придется пересчитать входные цепи. Подробно этот процесс описан в инструкции, которая лежит в архиве вместе с прошивкой и платой. Наибольшую сложность в Хамелеоне составляет монтаж процессора (Atmega32), и АЦП (AD9280). Шаг выводов довольно маленький, особенно в АЦП, поэтому при монтаже нужно проявлять аккуратность. Еще одна деталь, на которую стоит обратить внимание: в конструкции применяются танталовые конденсаторы, и “плюс” у них находится с той стороны, где полоска. При переполюсовке, устройство работать не будет. Советую до прошивки не запаивать R9-R11, R19, R14-R18 (Эти резисторы иногда мешают при прошивке), ну и не запаивать дроссель L1. Под кварц обязательно подложить прокладку, вырезать ее можно из обычного картона. Прошивать МК можно любым программатором, которых в сети полно. Прошивается он внутрисхемно, для этого нужно подпаять соответствующие выводы программатора к контактным площадкам на схеме. Подключаем программатор выбираем нужный hex-файл и прошиваем. После успешной прошивки переходим на фьюзы, внимательно смотрим, какие поставить, какие убрать и программируем их.

После прошивки запаиваем недостающие резисторы, подпаиваем дисплей, дроссель пока не запаиваем, подаем питание, 3.7В на контакты подключения батареи и зажимаем центральную кнопку. При этом прибор должен запустится на экране появится изображение, правда его видно только когда на экран падает свет, так как дроссель подсветки не установлен. После выключаем прибор, устанавливаем дроссель L1, и пытаемся вновь включить, при этом должна запустится подсветка экрана. Часто при первом включении луч уходит вверх, вернуть его на место можно стрелками  “вверх”, ”вниз” в рабочем режиме прибора. Проконтролировать правильность настройки можно с помощью обычной батарейки. Выбираем режим DC, подключаем к щупам батарейку, смотрим на отклонение луча вверх, затем подключаем батарейку обратной полярностью и смотрим на отклонение луча вниз. И вверх и вниз луч должен отклонится одинаково. Померять отклонение (напряжение), можно в режиме сканирования, нажимаем центральную клавишу, затем кнопку вниз, появится первый маркер, затем еще раз вниз – появится второй маркер, а в верхнем правом углу значение напряжения. Там же отображается длительность и частота. Если включать прибор с одновременно нажатой кнопкой вниз – переходим в режим настроек. Здесь можно задать цвет фона, сетки, луча и т.д Также здесь можно задать тональность звукового сигнала и проконтролировать значение напряжения на батарее. Если раньше не работали с осциллографом, советую немного почитать о его режимах и функциях, это облегчит работу с Хамелеоном.

Ну и напоследок осталось самое интересное – поместить плату в корпус. Размеры моего корпуса 92*50*25мм. В боковых стенках пропиляны пазы под плату и она отлично там лежит. Дисплей закреплен с помощью силикона к передней панели. Батарейка прикреплена ко дну с помощью двустороннего скотча. Получился маленький компактный прибор. Отличие только в том что в авторском варианте кнопки управления слева, у меня они справа (просто поменял назначение кнопок вверх-вниз и влево-вправо местами, порезал дорожки и соеденил потом проводниками). Распайка щупа делается просто: если смотрим на мини-джек, то самый толстый – это минус, средний это сигнал. Крайний это вход внешней синхронизации, применяется редко.

Ну вот вроде и все. Желаю всем удачной сборки. Ну и фото моего зверя 😎

Архив со всем необходимым для сборки (схема, плата, прошивка, описание)

Похожие радиосхемы и статьи:

eschemo.ru

Как сделать цифровой осциллограф из компьютера своими руками(часть 2) CAVR.ru


Рассказать в:

ПРОДОЛЖЕНИЕ:Подбор резисторов.    Другой способ – подбор пар резисторов. Точность обеспечивается за счёт подбора пар резисторов из двух комплектов резисторов с большим разбросом. Сначала все резисторы промеряются, а затем подбираются пары, сумма сопротивлений которых наиболее соответствует схеме. 
      Именно этим способом, в промышленных масштабах, подгонялись резисторы делителя для легендарного тестера «ТЛ-4».
Недостаток метода – трудоёмкость и потребность в большом количестве резисторов.
Чем длиннее список резисторов, тем выше точность подбора.
Подгонка резисторов при помощи наждачной бумаги.  Подгонкой резисторов, путём удаления части резистивной плёнки, не брезгует даже промышленность.
Однако при подгонке высокоомных резисторов не допускается прорезать резистивную плёнку насквозь. У высокоомных плёночных резисторов МЛТ, плёнка нанесена на цилиндрическую поверхность в виде спирали. Подпиливать такие резисторы нужно крайне осторожно, чтобы не разорвать цепь.
Точную подгонку резисторов в любительских условиях можно осуществить при помощи самой мелкой наждачной бумаги – «нулёвки».  Сначала с резистора МЛТ, у которого заведомо меньшее сопротивление, при помощи скальпеля аккуратно удаляется защитный слой краски.  Затем резистор подпаивается к «концам», которые подключаются к мультиметру. Осторожными движениями шкурки-«нулёвки» сопротивление резистора доводится до нормы. Когда резистор подогнан, место пропила покрывается слоем защитного лака или клея. 
На мой взгляд, это самый быстрый и простой способ, который, тем не менее, даёт очень хорошие результаты.Конструкция и детали.   Элементы схемы адаптера размещены в прямоугольном дюралюминиевом корпусе.
Переключение коэффициента деления аттенюатора осуществляется тумблером со средним положением.    В качестве входного гнезда применён стандартный разъём СР-50, что позволяет использовать стандартные кабели и щупы. Вместо него можно применить обычное аудио гнездо типа Джек (Jack) 3,5мм.  
    Выходной разъём – стандартное аудио гнездо 3,5мм. Адаптер соединяется с линейным входом аудиокарты при помощи кабеля с двумя Джеками 3,5мм на концах.  Сборка произведена методом навесного монтажа  Для использования осциллографа понадобится ещё кабель со щупом на конце.
Как его изготовить подробно будет описано в другом мануале в ближайшее время под названием «Как изготовить кабель-щуп для низкочастотного виртуального осциллографа?«Как откалибровать виртуальный осциллограф?Чтобы произвести калибровку осциллографа, нужно иметь хоть какой-нибудь измерительный прибор. Подойдёт любой стрелочный тестер или цифровой мультиметр, которому Вы доверяете.В связи с тем, что у некоторых тестеров слишком высокая погрешность при измерении переменного напряжения до 1-го Вольта, калибровку производим при максимально возможном, но неограниченном по амплитуде, напряжении.

Перед калибровкой производим следующие настройки.

Отключаем эквалайзер аудиокарты.  “Уровень линейного выхода”, “Уровень WAVE”, “Уровень линейного входа” и “Уровень записи” устанавливаем в положение максимального усиления. Это обеспечит повторяемость результата при дальнейших измерениях.   Сбросив на всякий случай настройки генератора командой Command > Get Generator Default Setting, устанавливаем «Gain» (уровень) в 0db.
Выбираем частоту генератора 50Hz переключателем «Frequency Presets» (предустановки), так как все любительские приборы для измерения переменного напряжения умеют работать на этой частоте, да и наш адаптер пока не может корректно работать на более высоких частотах.Переключаем вход адаптера в режим 1:1.Глядя на экран осциллографа, подбираем при помощи ручки генератора «Плавно» (Trim) максимальный неограниченный уровень сигнала.
Сигнал может ограничиваться, как на входе аудиокарты, так и на её выходе, при этом точность калибровки может существенно снизиться. В «AudioTester-е» даже имеется специальный индикатор перегрузки, который выделен на скриншоте красным цветом. 
Замеряем тестером напряжение на выходе генератора и рассчитываем величину соответствующего ему амплитудного значения.
Пример.
Показание вольтметра = 1,43 Вольта (действующее).
Получаем амплитудное значение.
1,432*√2 = 2,025 (Вольт)     Команда “Options > Calibrate” вызывает окно калибровки “AudioTester-а”.
И хотя возле окошка ввода указана размерность в «mVrms», что по идее должно означать среднеквадратичное значение, в реальности, в осциллографе «oszi v2.0c» из комплекта «AudioTester-а», вводимые значения соответствуют… непонятно чему. Что, правда, вовсе не мешает точно откалибровать прибор.
Путём ввода значений с небольшим шагом можно точно подогнать размер изображения синусоиды под вычисленное выше амплитудное значение.
На картинке видно, что амплитуда сигнала уложилась чуть больше, чем в два деления, что соответствует 2,02 Вольта.
Точность отображения амплитуды сигналов, полученных с входов 1:20 и 1:100 будет зависеть от точности подбора соответствующих резисторов делителя.   При калибровке осциллографа «Авангард», полученные при измерении тестером значения также нужно умножить на √2, так как и вольтметр, и калибратор «Авангард-а» рассчитан на амплитудные значения.
Вносим полученное значение в окошко калибровки в милливольтах – 2025 и нажимаем Enter.
Чтобы откалибровать второй диапазон осциллографа «Авангард», который отмечен, как «250», нужно сначала рассчитать реальный коэффициент деления, сравнив показания встроенного вольтметра в двух диапазонах делителя: 1:1 и 1:20. Вольтметр осциллографа, при этом должен находиться в положении «12,5»

Пример.
122 / 2323 = 19,3   Затем нужно подправить файл «calibr», который можно открыть в блокноте (Notepad-е). Слева файл до правки, а справа – после. 
Файл «calibr» находится в той же самой директории, где расположена текущая копия программы. 
В восьмую строчку вносим реальный коэффициент деления, соответствующий делителю первого (левого) канала. 
Если вы построили двухканальный адаптер, то в девятую строчку вносим поправку для второго (правого) канала.Как выровнять амплитудно-частотную характеристику адаптера?  Линейный вход аудиокарты, да и сами цепи адаптера обладают некоторой входной ёмкостью. Реактивное сопротивление этой ёмкости изменяет коэффициент деления делителя на высоких частотах.  Чтобы выровнять частотную характеристику адаптера в диапазоне 1:1, нужно подобрать ёмкость конденсатора C1 так, чтобы амплитуда сигнала на частоте 50 Гц была равна амплитуде сигнала частотой 18-20 кГц.  Резисторы R2 и R3 снижают влияние входной ёмкости и создают подъём частотной характеристики в области высоких частот. Компенсировать этот подъём можно путём подбора конденсаторов С2 и С3 в соответствующих диапазонах 1:20 и 1:100.
У подобрал следующие ёмкости: C1 – 39pF, C2 – 10nF, C3 – 0,1nF.   Теперь, когда канал Y верикального отклонения осциллографа откалиброван и линеаризован, можно увидеть, как выглядят те или иные периодические, и не только, сигналы. В «AudioTester-e» есть «ждущая синхронизация развёртки».Что делать, если нет тестера? Или опасные опыты.Можно ли использовать для калибровки осветительную сеть?

Так как любой уважающий себя радиолюбитель, несмотря на все предупреждения, первым делом пытается залезть своим детищем в розетку, я счёл необходимым рассказать об этом опасном занятии подробнее.
     По ГОСТу напряжение сети не должно выходить за пределы 220 Вольт – 10% +5%, хотя, в реальной жизни, это условие соблюдается не так часто, как хотелось бы. Ошибки измерений в процессе подгонке резисторов и замерах импеданса также могут привнести высокие погрешности при данном способе калибровки. 
     Если Вы собрали прецизионный делитель, например, на высокоточных резисторах, и если известно, что в вашем доме напряжение в осветительной сети поддерживается с достаточной точностью, то её можно использовать для грубой калибровки осциллографа. 
Но, есть очень много НО, из-за которых, я Вам категорически не рекомендую это делать. Первое и наиболее важное «НО», это сам факт того, что Вы читаете эту статью. Тот, кто на ты с электричеством, вряд ли стал бы тратить на это время. Но, если и это не аргумент… 
Самое главное!   1. Компьютер должен быть надёжно заземлён!!!
2. Ни под каким предлогом не суйте в розетку «земляной» провод! Это тот провод, который соединён через корпус разъёма линейного входа с корпусом системного блока!!! (Другие названия этого провода: масса, корпус, общий, экран и т.д.) Тогда, вне зависимости от того, попадёте Вы в фазу или в ноль, не произойдёт короткое замыкание. 
Другими словами, в розетку можно втыкать только провод, который соединён с резистором R1 номиналом 1 мегом, расположенном в схеме адаптера!!!
Если же Вы попытаетесь воткнуть в сеть провод, соединенный с корпусом, то в 50% случаев это приведёт к самым печальным последствиям.
Так как максимальная неограниченная амплитуда на линейном входе около 250мВ, то в положении делителя 1:100 можно будет увидеть амплитуду величиной примерно в 50… 250 Вольт (в зависимости от входного импеданса). Поэтому, для измерения напряжения сети, адаптер должен быть оборудован делителем 1: 1000. 
Делитель 1:1000 можно рассчитать по аналогии с делителем 1:100.
Пример расчёта делителя 1:1000.
Верхнее плечо делителя = 1007кОм.
Входной импеданс = 50кОм.
Коэффициента деления по входу 1:1 = 20,14.
Определяем общий коэффициент деления для входа 1:1000.
20,14*1000 = 20140 (раз) 
Рассчитываем величину резистора для делителя.
1007*50 / 50*20140 –50 –1007 ≈ 50 (Ом)ПРОДОЛЖЕНИЕ СЛЕДУЕТ:



Раздел:
[Измерительная техника]

Сохрани статью в:

Оставь свой комментарий или вопрос:



www.cavr.ru