Стабилизатор напряжения 12 вольт своими руками 5 ампер – 12

Стабилизатор напряжения 12V — DRIVE2

Когда я ставил противотуманки на Duster (в качестве ДХО)я подключил их через такой стабилизатор напряжения, и вставил в противотуманки самые дешевые китайские светодиодные лампочки. Повторюсь ставил для использования светодиодов в противотуманках. Прошло пол года а лампы в противотуманках светят прекрасно и не думают перегарать. А все потому что на них подается стабильные 12 вольт.
Заряженый аккумулятор выдает 13V с лишним вольт, а при заведенном двигателе ток в бортовой сети 14V с лишним.

Таким образом если на входе на стабилизатор будет 14V то на выходе из него будет 12V.

И вот собрался я ставить отцу на RAV4 камеру заднего вида и GPS трекер, ну и решил я подключить к ним питание также через стабилизатор напряжения, дабы продлить срок службы.

Нашел я инфу вот по этой ссылке: www.drive2.ru/b/339900/

Понадобились:
Микросхема L7812
Конденсатор 330мкф16вольт
Конденсатор 100мкф16 вольт
Диод на 1 ампер (1N4001, например, или аналогичный диод Шотки)
Провода
Термоусадка

Как собирал — подробно изложил на фото. в качестве радиатора использовал кузовную шайбу (но практика показала что микрик почти не греется)

Также собрал корпус из коробки от DVD, изоленты и термоклея (см. фото), провода и саму конструукцию внутри бокса закрепил термоклеем

Либо можно использовать готовый корпус.

Советую подключать такого рода тюняшки как камеры\маниторы\светодиодные подсветки и тд. через предохранитель и такой стабилизатор.

Всем добра!

www.drive2.ru

Простая схема стабилизатора на 12 вольт

Подборка схем различных источников питания на 12 вольт для радиолюбительских конструкций и устройств.

Сетевое напряжение поступает через предохранитель на первичную обмотку силового трансформатора. С его вторичной обмотки снимем уже пониженное напряжение на 20 вольт при токе до 25А. При желании этот трансформатор можно сделать своими руками на основе силового трансформатора от старого лампового телевизора.

Со вторичной обмотки напряжение 20 вольт идет на выпрямительный мост на мостовой сборке МВ356, т.к она рассчитана на ток до 35 Ампер. Пульсации сглаживаются емкостью с номиналом 22000 мкф, можно использовать несколько конденсаторов соединенными параллельно, так чтобы в сумме было не менее 20000 мкФ.

Постоянное напряжение на емкости С1 в режиме холостого хода около 26 вольт. Стабилизатор построен на микросхеме LM723 и выходного регулятора на биполярных транзисторах VT1-VT5. Сопротивления R5-R8 предназначены для уравновешивания токовых потенциалов проходящих через транзисторы. Сопротивления, включенные в эмиттерных цепях транзисторов используются для автоматической установки напряжений база-эмиттер под действием тока нагрузки.

Настройка выходного напряжения осуществляется с помощью сопротивления R3, которое вместе с резисторами R2 и R4 является делителем выходного напряжения.

Внутренний компаратор микросхемы стабилизатора работает так, что напряжение на выводе 10 настраивают так, чтобы напряжение на его четвертом выводе не изменялось.

Для формирования максимального тока нагрузки 20А в схеме требуется усилитель тока, на биполярных транзисторах VT1-VT5.

Имеется возможность осуществить регулировку максимального выходного тока, если параллельно низкоомным сопротивлениям R9-R12 подсоединить один переменный резистор номиналом, где-то 10-100 Ом, а контрольное напряжение получать с его ползунка и одного из двух крайних выводов. Сопротивление будет являться делителем напряжения на R9-R12. Но в этом случае, сопротивления R9-R12 нужно рассчитывать на нижний предел регулировки максимального тока нагрузки. С помощью этого сопротивления можно еще настраивать ток срабатывания защиты.

Схема обеспечивает достаточно хорошую стабильность заданного выходного напряжения.

Транзисторы VT2-VT5 требуется установить на объемные радиаторы, обеспечивающих их отличное охлаждение. Можно даже использовать радиатор в сочетании с вентилятором.

В первой схеме напряжение от сети следует к понижающему трансформатору через плавкую вставку FU1 на 7А. Защитный V1 должен быть на 240 вольт. Трансформатор понижающий с напряжение на вторичной обмотке не менее 15 вольт и с током нагрузки от 5 ампер.

Пониженное напряжение с вторички идет на диодный мост, на его выходе установлен электролитический конденсатор для сглаживания пульсаций. Диоды VD5 и VD6 защитные для исключения разряда емкостей C2 и C3 от незначительного тока утечки в регуляторе LM338. С4 нужен для фильтрации ВЧ составляющей БП. Для нормальной работы схемы, стабилизатор напряжения LM338 требуется закрепить на радиаторе.

Вторая аналогичная конструкция мощного блока питания на 12 вольт и 5 ампер выполнена на стабилизаторе 7812. Так как допустимый максимальный ток нагрузки микросхемы всего 1,5 ампер, в конструкцию добавлен обходной внешний транзистор VT1.

Если ток в нагрузки будет ниже 0,6 Ампера, то он будет идти через стабилизатор 7812. Если выше, то на сопротивление R1 будет напряжение выше 0,6 вольта, и силовой транзистор начинает пропускать через себя дополнительный ток нагрузки. Сопротивление R2 ограничивает чрезмерный базовый ток.

Силовой транзистор требуется разместить на радиаторе. Резистор R1 на мощность не менее 7 Вт. R2 достаточно 0,5 Вт.

У любого компьютерного блока питания уже есть 12 вольт, поэтому остается только понять где они. Провода черного цвета в жгуте это минус или общий провод. По желтым идет напряжение +12V. Так вот для того, чтобы получить 12 вольт нам нужно от блока питания взять всего два провода. Стоит учесть, что выходной канал на 12 вольт достаточно мощный и может «отдать» в нагрузку 8-10 ампер (при мощности БП до 300 Вт.), его в принципе в большинстве случаев вполне хватает.

Автомобилисты часто задаются вопросом, как защитить в автомобиле электропотребители, которые питаются напряжением. Выход из строя стабилизатора напряжения 12 вольт, который установлен в генераторе, может вывести из строя дорогостоящую автомобильную магнитолу или тахометр, который также питается электрической энергией.

Выше описная ситуация встречалась часто на классических отечественных автомобилях. Для того чтобы обеспечить электрические компоненты автомобиля качественным напряжением, которое не будет зависеть от капризов генератора, лучше применить автономный автомобильный стабилизатор напряжения 12 вольт. Даже такие популярные сегодня элементы тюнинга, как светодиодная лента, лучше питать через этот прибор.

На сегодня успешно используются автомобильные модели, чья конструкция построена на микросхемах серии КР142, которые рассчитаны на работу при напряжении 12 В. Они имеют такую маркировку: КР142ЕН12 и КР142ЕН18. В конструкции этих микросхем предусмотрена защита по току, который через них протекает, а также защита от перегрева.

Цифры в маркировке, которые стоят после букв ЕН, обозначают номинальное напряжение, при котором может работать микросхема. Кроме приведенных выше, в автомобиле возможно применение микросхемы КР142ЕН8В, однако она будет выдавать рабочий ток, равный 2,2 А, а он больше, чем у первых двух вариантов.

Вариантов подключения в схему стабилизатора напряжения 12 вольт в автомобиле много. Ниже на рисунке приведен самый простой пример, который вполне приемлем для людей, которые не имеют больших познаний в электронике.

Если при монтаже схемы будет использована микросхема КР142ЕН18, то переменный резистор R2 необходимо будет немного подстроить, что бы значение выходного напряжения было правильной величины. В остальном, схема подключения аналогична представленной на рисунке.

Резисторы, должны быть по мощности не менее 0,05 Вт, так как при работе она будет зависеть от разницы значений входного и выходного напряжения. Устанавливается микросхема на радиатор. Максимальный ток, который может протекать через микросхему составляет 1,5 А. Для работы автомобильной магнитолы этого тока может быть не достаточно, но другие электрические устройства машины могут работать вполне полноценно. У описанных отечественных микросхем есть импортный аналог — микросхема типа LM317T.

Подключать в электрическую цепь ее можно, пользуясь той же схемой. Если возникла необходимость все-таки подсоединить более мощное устройств

elektrokomplektnn.ru

Стабилизированный источник питания 12В / 30А – Поделки для авто

Представляем мощный стабилизированный блок питания на 12 В. Он построен на микросхеме стабилизатора LM7812 и транзисторах TIP2955, что обеспечивает ток до 30 А. Каждый транзистор может давать ток до 5 А, соответственно 6 транзисторов обеспечат ток до 30 А. Можно изменением количества транзисторов и получить желаемое значение тока. Микросхема выдает ток около 800 мА.

На его выходе установлен предохранитель в 1 А для защиты от больших переходных токов. Нужно обеспечить хороший теплоотвод от транзисторов и микросхемы. Когда ток через нагрузку большой, мощность рассеиваемая каждым транзистором также увеличивается, так что избыточное тепло может привести к пробою транзистора.

В этом случае для охлаждения потребуется очень большой радиатор или вентилятор. Резисторы 100 Ом используются для стабильности и предотвращения насыщения, т.к. коэффициенты усиления имеют некоторый разброс у одного и того же типа транзисторов. Диоды моста рассчитаны не менее, чем на 100 А.

Примечания

Наиболее затратным элементом всей конструкции, пожалуй, является входной трансформатор, Вместо него возможно использование двух последовательно соединенных батарей автомобиля. Напряжение на входе стабилизатора должно быть на несколько вольт выше требуемого на выходе (12В), чтобы он мог поддерживать стабильный выход. Если используется трансформатор, то диоды должны выдерживать достаточно большой пиковый прямой ток, обычно, 100А или более.

Через LM 7812 будет проходить не более 1 А, остальная часть обеспечивается транзисторами.Так как схема рассчитана на нагрузку до 30А, то шесть транзисторов соединены параллельно. Рассеиваемая каждым из них мощность – это 1/6 часть общей нагрузки, но все же необходимо обеспечить достаточный теплоотвод. Максимальный ток нагрузки приведет к максимальному рассеиванию, при этом потребуется крупногабаритный радиатор.

Для эффективного отвода тепла от радиатора, может быть хорошей идеей применение вентилятора или радиатора с водяным охлаждением. Если блок питания нагружен на максимальную нагрузку, а силовые транзисторы вышли из строя, то весь ток пройдет через микросхему, что приведет к катастрофическому результату. Для предотвращения пробоя микросхемы на ее выходе стоит предохранитель в 1 А. Нагрузка 400 МОм только для тестирования и не входит в окончательную схему.

Вычисления

Данная схема отличная демонстрация законов Кирхгофа. Входящая в узел сумма токов, должна быть равна сумме токов выходящих из этого узла, а сумма падений напряжений на всех ветвях, любого замкнутого контура цепи должна быть равна нулю. В нашей схеме, входное напряжение 24 вольт, из них 4В падения на R7 и 20 В на входе LM 7812, т.е 24 -4 -20 = 0. На выходе суммарный ток нагрузки 30А, регулятор поставляет 0.866А и 4.855А каждый из 6 транзисторов: 30 = 6 * 4.855 + 0.866.

Ток базы составляет около 138 мА на транзистор, чтобы получить ток коллектора около 4.86А коэффициент усиления по постоянному току для каждого транзистора должен быть не менее 35.

TIP2955 удовлетворяет этим требованиям. Падение напряжения на R7 = 100 Ом при максимальной нагрузке будет 4В. Рассеиваемая на нем мощность, вычисляется по формуле P= (4 * 4) / 100, т.е 0.16 Вт. Желательно, чтобы этот резистор был мощностью 0.5 Вт.

Входной ток микросхемы поступает через резистор в цепи эмиттера и переход Б-Э транзисторов. Еще раз применим законы Кирхгофа. Входной ток регулятора состоит из тока 871 мА, протекающего по цепи базы, и 40.3мА через R = 100 Ом.
871,18 = 40,3 + 830. 88. Входной ток стабилизатора всегда должен быть больше выходного. Мы видим, что он потребляет только около 5 мА и практически не должен греться.

Тестирование и ошибки

Во время первого испытании, не надо подключать нагрузку. Вначале измеряем вольтметром напряжение на выходе, оно должно быть 12 вольт, или не сильно отличающаяся величина. Затем подключаем сопротивление около100 Ом, 3 Вт в качестве нагрузки.Показания вольтметра не должны измениться. Если вы не видите 12 В, то, предварительно выключив питание, следует проверить корректность монтажа и качество пайки.

Один из читателей, получил на выходе 35 В, вместо стабилизированных 12 В. Это было вызвано коротким замыканием силового транзистора. Если есть КЗ любого из транзисторов, придется отпаять все 6 для проверки мультиметром переходов коллектор-эмиттер.

Похожие статьи:

xn—-7sbgjfsnhxbk7a.xn--p1ai

Регулируемый стабилизатор от 0 до 12 вольт

Регулируемый стабилизатор напряжения от 0 до 12 вольт и током нагрузки до 1-го
ампера представлен на рисунке 1.

Переменное напряжение 12 вольт выпрямляется диодным
мостиком VD1…VD4, сглаживается фильтром С1 С2, подается на
параметрический стабилизатор на стабилитроне VD1. Напряжение 12
вольт, выделенное на стабилитроне, приложено к резистору R2. С
движка переменного резистора R2 напряжение подается на аналоговый
ключ VT1 VT2, включенного по схеме составного транзистора. Степень
открытия ключа зависит от положения движка переменного резистора
R2, т.е. в нижнем по схеме положении регулятора, напряжение на базе
равно нулю и транзисторы VT1 VT2 закрыты, напряжение в нагрузку не
поступает. В верхнем по схеме положении регулятора R2, напряжение
не базе максимально. Транзисторы открыты полностью, а напряжение с
выпрямителя приложено к нагрузке, за исключением падения на
переходе коллектор – эмиттер транзистора VT1.

В схеме регулируемого стабилизатора на рисунке 1
заложена схема защиты по току на транзисторе VT3. Если ток на резисторе R4 превысит значение 1,2
ампера, за счет падения напряжения на нем открывается транзистор VT3,
шунтируя тем самым переходом коллектор – эмиттер резистор R2,
напряжение на R2 уменьшается, вызывая закрытие транзисторов VT1 VT2.

Порог срабатывания защиты по току подбирается сопротивлением R4,
и при его сопротивлении 0,5 ома примерно равен 1,1…1,25 ампера.

Регулируемый стабилизатор от 0 до 12 вольт 3 ампера

Исключив из схемы на рисунке 1 узел защиты по току и заменив транзисторы VT1 VT2
на более мощные, можно построить регулируемый стабилизатор от 0 до
12 вольт с током в нагрузке до 3-х ампер. Схема такого
стабилизатора представлена на рисунке 2.

При повторении схемы регулируемого стабилизатора на рисунке
2, необходимо обратить внимание на тепловые параметры
выпрямительного мостика VD1…VD4 и транзистора VT2. Транзистор VT2
необходимо установить на радиатор с площадью охлаждения не мене 250
кв.см, а диоды должны быть рассчитаны на ток не менее 10 ампер
(Д245…Д247).

В схеме регулируемого стабилизатора не показан
питающий транформатор, который должен обеспечить требуемый
ток
на вторичной обмотке.

www.radiolub.ru

Стабилизаторы напряжения 5 вольт. l7805,lm2576.

Доброго времени суток!

Сегодня, хотелось бы затронуть тему питания электронных устройств.

Итак, прошивка готова, микроконтроллер куплен, схема собрана, остается лишь подключить питание, но где его взять? Предположим что микроконтроллер AVR и схема запитывается 5 вольтами.

Получить 5в нам помогут следующие схемы:

Линейный стабилизатор напряжения на микросхеме L7805

Данный способ самый простой и дешевый. Нам понадобятся:

  1. Микросхема L7805 или её аналоги.
  2. Крона 9v или любой другой источник питания (ЗУ телефона, планшета, ноутбука).
  3. 2 конденсатора (для l7805 это 0.1 и 0.33 микроФарад).
  4. Радиатор.

Соберем следующую схему:

Данный стабилизатор основывает свою работу на микросхеме l7805, которая обладает следующими характеристиками:

  • Максимальный ток: 1.5A

  • Входное напряжение: 7-36В

  • Выходное напряжение:5В

Конденсаторы служат для сглаживания пульсаций. Однако, падение напряжения происходит непосредственно на микросхеме. То есть если на вход мы подаем 9 вольт, то 4 вольта (Разница между входным напряжением и напряжением стабилизации) упадут на микросхеме l7805. Это приведет к выделению тепла на микросхеме, количество которого легко рассчитать по формуле:

(Входное напряжение – напряжения стабилизации)* ток через нагрузку.

То есть если мы подаем 12 вольт на стабилизатор, которым мы питаем схему, которая потребляет 0.1 Ампера, на l7805 рассеется (12-5)*0.1=0.7 вт тепла. Поэтому, микросхему необходимо закрепить на радиаторе:

Плюсы данного стабилизатора:

  1. Дешевизна (Без учета радиатора).
  2. Простота.
  3. Легко собирается навесным монтажом, т.е. отсутствует необходимость изготовления печатной платы.

Минусы:

  1. Необходимость размещения микросхемы на радиаторе.
  2. Отсутствует возможность регулировки стабилизируемого напряжения.

Данный стабилизатор отлично подойдет как источник напряжения для простых, нетребовательных к питанию схем.

Импульсный стабилизатор напряжения

Для сборки нам понадобится:

  1. Микросхема LM2576S-5.0 (Можно взять аналог, однако обвязка будет другой, уточните в документации конкретно вашей микросхемы).
  2. Диод 1N5822.
  3. 2 конденсатора(Для LM2576S-5.0, 100 и 1000 микроФарад).
  4. Дроссель (Катушки индуктивности) 100 микроГенри.

Схема подключения следующая:

Микросхема LM2576S-5.0 обладает следующими характеристиками:

  • Максимальный ток: 3A
  • Входное напряжение:7-37В
  • Выходное напряжение: 5В

Стоит заметить что данный стабилизатор требует большего количества компонентов( А так же наличия печатной платы, для более аккуратного и удобного монтажа). Однако данный стабилизатор обладает огромным преимуществом перед линейным собратом — он не греется, да и максимальный ток в 2 раза выше.

Плюсы данного стабилизатора:

  1. Меньший нагрев (Отсутствует необходимость покупки радиатора).
  2. Больший максимальный ток.

Минусы:

  1. Дороже линейного стабилизатора.
  2. Сложность навесного монтажа.
  3. Отсутствует возможность изменения стабилизируемого напряжения (При применении микросхемы LM2576S-5.0).

Для питания простых любительских схем на микроконтроллерах AVR, представленных выше стабилизаторов достаточно. Однако в следующих статьях, мы попробуем собрать лабораторный блок питания, который позволит быстро и удобно настраивать параметры питания схем.

Спасибо за внимание!

mkprog.ru