Любительские схемы блоки питания – Простой мощный импульсный блок питания для питания радио электро-аппаратуры — Блоки питания (импульсные) — Источники питания

Содержание

Простой мощный импульсный блок питания для питания радио электро-аппаратуры — Блоки питания (импульсные) — Источники питания

Часто собирая какую нибудь электронную конструкцию,как то, усилитель звуковой частоты,средства автоматики,устрой ства на базе микроконтроллеров,и многое другое,мы задаемся вопросом а чем питать аппаратуру? Радиоэлектронные устройства в большинстве своем питаются постоянным напряжением отличным от напряжения сети. В последнее время все чаще импульсная техника вытесняет из повседневного обихода традиционные трансформаторные схемы блоков питания. Выигрыш тут очевиден, во первых это экономия намоточного материала, который стоит не дешево. Во вторых, это габариты и масса приборов,на сегодняшний день при современной миниатюризации аппаратуры различного назначения,этот вопрос очень актуален, большинство схем ИБП довольно сложны в сборке и настройке и не доступны для повторения начинающими радиолюбителями.

В данной статье приводится схема простого ИБП, при разработке которого ставилась задача простоты конструкции, хорошей повторяемости, использование подручного материала, не сложности в сборке и настройке. Не смотря на простоту, ИБП имеет довольно неплохие характеристики.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИБОРА

Питающее напряжение сети: .220В/50Гц.
Номинальная выходная мощность: 300Вт.
Максимальная выходная мощность: .до 500Вт.
Частота преобразования напряжения: 30кГц.
Вторичное выпрямленное напряжении варьируется по необходимости.

ПРИНЦИПИАЛЬНАЯ СХЕМА ИПБ

Принцип работы ИБП заключается в следующем: импульсы для управления ключами генерирует задающий генератор построенный на специальном драйвере TL494, частота импульсов управления 30кГц.импульсы управления с выходов микросхемы подаются по очередно на транзисторные ключи VT1,VT2 предварительного формирователя импульсов для выходных силовых ключей. Ключи VT1,VT2 нагружены трансформатором управления TR1, котрый и формирует импульсы управления мощными выходными ключами VT3,VT4 ,формирователь необходим для гальванической развязки затворных цепей выходного каскада. ИБП построен по полумостовой схеме, средняя точка для полумоста создается конденсаторами С3,С4, которые одновременно служат сглаживающим фильтром выпрямленного диодным мостом VDS1 питающего напряжения сети. Цепь R7,C8 обеспечивает кратковременно питание на задающий генератор и формирователь импульсов управления,для первичного запуска ИБП, после полного заряда конденсатора С8 питание формирователя осуществляется непосредственно обмоткой 3 трансформатора TR2 c которой снимается переменное напряжение 12В.цепочка VD2 ,C6 служит для выпрямления и сглаживания питающего формирователь напряжения. Стабилитрон VD1 ограничивает напряжение первичного запуска до 12В.Вторичное напряжение питания для РЭА снимается с обмотки 3 трансформатора TR2, выпрямляется диодами шотки VD3,VD4 и подается на сглаживающий фильтр С9,С10. Если необходимое напряжение питания превышает 35В, включаются по два диода последовательно.

Несколько слов о конструкции ИБП: большинство компонентов взяты из неисправного компьютерного БП АТХ. А именно это микросхема TL494, конденсаторы С9,С10, диодный мост VDS1, конденсаторы С1,С2, С5,С6,С7, диод VD2, диоды шотки VD3,VD4, и ферритовые сердечники с каркасами TR1,TR2.

Сам ИБП конструктивно был собран в корпусе того же разобранного БП АТХ.транзисторы VT3,VT4 установлены на радиаторы площадью 50см/кв.

Данные перемотки трансформаторов TR1,TR2: 
TR1, все четыре обмотки содержат по 50 витков провода 0.5 мм 
TR2, Обмотка 1 наматывается проводом 0.8мм 110 витков. Обмотка 3 содержит 12 витков проводом 0.8мм. Обмотка 2 наматывается в зависимости от необходимого вторичного напряжения питания и рассчитывается из соотношения 1вит./2вольта. Так как на выходе стоит удвоитель напряжения.

Успехов в повторении!

Скачать печатную плату в формате Layot (6 КБайт)

Автор схемы: Артур (Левша)

cxema.my1.ru

Блок питания начинающего радиолюбителя | Все своими руками

Опубликовал admin | Дата 25 мая, 2014

     Радиолюбители часто применяют в своих устройствах трансформаторы выходные кадров (ТВК) от ламповых телевизоров. Анализ параметров многочисленных ТВК показал, что наиболее пригодными и доступными для радиолюбителей подходят трансформаторы, данные которых приведены в таблице.

      В некоторых типах ТВК имеется третья обмотка. Она намотана тонким проводом и не способна отдавать в нагрузку значительные токи, поэтому она не в основном не используется, а зря! Например, она могла бы дополнять обмотку способную отдавать в нагрузку больший ток. Имея источник питания с током нагрузи 0,05А и приставку, можно прекрасно проверять стабилитроны — определять их напряжение стабилизации. Схему приставки можно поглядеть здесь. Или использовать эту обмотку для получения отрицательного напряжения для питания операционных усилителей. В некоторых случаях, ток 50 мА не так уж и мал. Все в мире относительно. Поэтому хочу вам предложить простенькую схему блока питания с сетевым трансформатором, в качестве которого используется ТВК110Л-1.

Параметры блока питания
Выходное напряжение U1 (B)……………………… 1,25… 18
Максимальный ток нагрузки (А)…………………. 1
Выходное напряжение U2 (B)……………………… 1,25… 30
Максимальный ток нагрузки (А)…………………. 0,05
При соединении точек 2 и 3
макс. напряжение на точках 1 и 4 (В) …………. 48

     Сетевой предохранитель должен быть рассчитан на ток 0,25А, но если в момент включения блока в сеть он будет перегорать из-за начального тока заряда конденсаторов фильтров, то можно будет применить предохранитель с током 0,5А. Диодный мост VD1 — КЦ405 с любой буквой. VD2 — КД906А или применить этот же КЦ405, не такой уж он и дорогой.

Микросхему стабилизатора DA1 обязательно надо установить на теплоотвод. Для измерения напряжения на выходе стабилизаторов и тока через более мощный, применена измерительная головка с добавочными резисторами и шунтом. Как рассчитать значения этих резисторов, можно узнать, прочитав эту статю. Сейчас встречаются схемы с высоковольтными операционными усилителями, например 1408УД1, у него напряжение питания — + 27В. Поэтому выходное напряжение стабилизатора DA1 можно увеличить до 27В пересчитав величину резистора R2. Формула на рисунке 1. Весь монтаж блока питания можно сделать навесным способом. Успехов. К.В.Ю.

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:13 588

www.kondratev-v.ru

Радиосхемы Схемы электрические принципиальные. Любительские схемы блоки питания

Радиосхемы радио схемы для радиолюбителей…

Схема импульсного стабилизатора ненамного сложней обычного, используемого в трансформаторных блоках питания, но более сложная в настройке.

Поэтому недостаточно опытным радиолю­бителям, не знающим правил работы с высоким напряжением (в частности, никогда не работать в одиночку и никогда не настраивать включенное уст­ройство двумя руками — только одной!), не рекомендую повторять эту схему.

На рис. 1 представлена электрическая схема импульсного стабилизатора напряжения для зарядки сотовых телефонов.

Рис. 1 Электрическая схема импульсного стабилизатора напряжения

Схема представляет собой блокинг-генератор, реализованный на транзисторе VT1 и трансформаторе Т1. Диодный мост VD1 выпрямляет переменное сете­вое напряжение, резистор R1 ограничивает импульс тока при включении, а также выполняет функцию предохранителя. Конденсатор С1 необязателен, но благодаря ему блокинг-генератор работает более стабильно, а нагрев транзи­стора VT1 чуть меньше (чем без С1).


При включении питания транзистор VT1 слегка приоткрывается через рези­стор R2, и через обмотку I трансформатора Т1 начинает течь небольшой ток. Благодаря индуктивной связи, через остальные обмотки также начинает протекать ток. На верхнем (по схеме) выводе обмотки II положительное напряжение небольшой величины, оно через разряженный конденсатор С2 приоткрывает транзистор еще сильней, ток в обмотках трансформатора нарастает, и в итоге транзистор открывается полностью, до состояния насыщения.

Через некоторое время ток в обмотках перестает нарастать и начинает снижаться (транзистор VT1 все это время полностью открыт). Уменьшается напряжение на обмотке II, и через конденсатор С2 уменьшается напряжение на базе транзистора VT1. Он начинает закрываться, амплитуда напряжения в обмотках уменьшается еще сильней и меняет полярность на отрицательную.

Затем транзистор полностью закрывается. Напряжение на его коллекторе увеличивается и становится в несколько раз больше напряжения питания (индуктивный выброс), однако благодаря цепочке R5, С5, VD4 оно ограничивается на безопасном уровне 400…450 В. Благодаря элементам R5, С5 генерация нейтрализуется не полностью, и через некоторое время полярность напряжения в обмотках снова меняется (по принципу действия типичного колебательного контура). Транзистор снова начинает открываться. Так продолжается до бесконечности в цикличном режиме.

На остальных элементах высоковольтной части схемы собраны регулятор напряжения и узел защиты транзистора VT1 от перегрузок по току. Резистор R4 в рассматриваемой схеме выполняет роль датчика тока. Как только паде­ние напряжения на нем превысит 1…1,5 В, транзистор VT2 откроется и замк­нет на общий провод базу транзистора VT1 (принудительно закроет его). Конденсатор СЗ ускоряет реакцию VT2. Диод VD3 необходим для нормаль­ной работы стабилизатора напряжения.

Стабилизатор напряжения собран на одной микросхеме — регулируемом стабилитроне DА1.

Для гальванической развязки выходного напряжения от сетевого использует­ся оптрон VOL Рабочее напряжение для транзисторной части оптрона берет­ся от обмотки II трансформатора Т1 и сглаживается конденсатором С4. Как только напряжение на выходе устройства станет больше номинального, через стабилитрон DA1 начнет течь ток, светодиод оптрона загорится, сопротивле­ние коллектор-эмиттер фототранзистора VOL2 уменьшится, транзистор VT2 приоткроется и уменьшит амплитуду напряжения на базе VT1.

Он будет сла­бее открываться, и напряжение на обмотках трансформатора уменьшится. Если же выходное напряжение, наоборот, станет меньше номинального, то фототранзистор будет полностью закрыт и транзистор VT1 будет «раскачиваться» в полную силу. Для защиты стабилитрона и светодиода от перегрузок по току, последовательно с ними желательно включить резистор сопротивле­нием 100…330 Ом.

НалаживаниеПервый этап: первый раз включать устройство в сеть рекомендуется через лампу 25 Вт, 220 В, и без конденсатора С1. Движок резистора R6 устанавли-вают в нижнее (по схеме) положение. Устройство включают и сразу отклю­чают, после чего как можно быстрей измеряют напряжения на конденсаторах С4 и Сб. Если на них есть небольшое напряжение (согласно полярности!), значит, генератор запустился, если нет генератор не работает, требуется поиск ошибки на плате и монтаже. Кроме того, желательно проверить тран­зистор VT1 и резисторы R1, R4.

Если все правильно и ошибок нет, но генератор не запускается, меняют мес­тами выводы обмотки II (или I, только не обоих сразу!) и снова проверяют работоспособность.

Второй этап: включают устройство и контролируют пальцем (только не за металлическую площадку для теплоотвода) нагрев транзистора VTI, он не должен нагреваться, лампочка 25 Вт не должна светиться (падение напряже­ния на ней не должно превышать пары Вольт).

Подключают к выходу устройства какую-нибудь маленькую низковольтную лампу, например, рассчитанную на напряжение 13,5 В. Если она не светится, меняют местами выводы обмотки III.

И в самом конце, если все нормально работает, проверяют работоспособность регулятора напряжения, вращая движок подстроечного резистора R6. После этого можно впаивать конденсатор С1 и включать устройство без лампы-токоограничителя.

Минимальное выходное напряжение составляет около 3 В (минимальное па­дение напряжения на выводах DA1 превышает 1,25 В, на выводах светодио­да—1,5В).Если нужно меньшее напряжение, заменяют стабилитрон DA1 резистором сопротивлением 100…680 Ом. Следующим шагом настройки требуется уста­новка на выходе устройства напряжения 3,9…4,0 В (для литиевого аккумуля­тора). Данное устройство заряжает аккумулятор экспоненциально умень­шающимся током (от примерно 0,5 А в начале заряда до нуля в конце (для литиевого аккумулятора емкостью около 1 А/ч это допустимо)). За пару ча­сов режима зарядки аккумулятор набирает до 80 % своей емкости.

О деталяхОсобый элемент конструкции — трансформатор.Трансформатор в этой схеме можно использовать только с разрезным ферри-товым сердечником. Рабочая частота преобразователя довольно велика, поэтому для трансформаторного железа нужен только феррит. А сам преоб­разователь — однотактный, с постоянным подмагничиванием, поэтому сер­дечник должен быть разрезным, с диэлектрическим зазором (между его поло­винками прокладывают один-два слоя тонкой трансформаторной бумаги).

Лучше всего взять трансформатор от ненужного или неисправного анало­гичного устройства. В крайнем случае его можно намотать самому: сечение сердечника 3…5 мм2, обмотка I-450 витков проводом диаметром 0,1 мм, обмотка II-20 витков тем же проводом, обмотка III-15 витков прово­дом диаметром 0,6…0,8 мм (для выходного напряжения 4…5 В). При намот­ке требуется строгое соблюдение направления намотки, иначе устройство будет плохо ра

xn—-7sbeb3bupph.xn--p1ai

Радиосхемы. — Источники питания

Раздел

Схемы блоков питания, теория построения источников питания

Для любой аппаратуры требуется электропитание.

В некоторых случаях электроэнергию можно получить от электрохимических источников (батареек или аккумуляторов), но это когда речь идет о носимых устройствах, но на практике мы чаще всего используем промышленную сеть 220 Вольт, и вот здесь возникает целый ряд вопросов: ведь это напряжение необходимо преобразовывать: уменьшить (а иногда и увеличить), выпрямить, стабилизировать и так далее…

Устройства, которые преобразовывают электроэнергию принять называть вторичными источниками питания или просто блок питания (под понятием «первичный источник питания» подразумеваются химические источники) или просто блок питания, и именно блокам питания и посвящен данный раздел: здесь Вы сможете ознакомиться с теорией построения блоков питания, а также найдете различные схемы блоков питания.

Теория построения блоков питания

Параметрический стабилизатор
Компенсационный стабилизатор
Специализированные микросхемы стабилизаторов напряжения
Умножитель напряжения
Устройство импульсного источника питания
Защита стабилизаторов от перегрева
Транзисторные стабилизаторы с защитой от перегрузки (теория)

Практические схемы источников питания

Электронный ЛАТР
Регулятор температуры паяльника
Стабилизатор температуры паяльника
Стабилизированный Блок питания на 35 Вольт
Стабилизатор напряжения с защитой 13V/10A
Зарядное устройство для никель-кадмиевых аккумуляторов
Безтрансформаторный преобразователь напряжения
Бестрансформаторный удвоитель напряжения для малогабаритных устройств
Регулируемый источник питания 1…29V, 2A
Блок питания 13V, 20A
Схемы стабилизированных блоков питания
Блоки питания с регулировкой
Простой регулятор мощности

Блок питания с регулировкой напряжения и тока
Стабилизатор напряжения 0…25V с защитой по току
Зарядное устройство из компьютерного блока питания
Блок питания на 3V
Блок питания 13V, 20A на микросхеме серии КРЕН
Как увеличить мощность КРЕНки до 20 Ампер
Еще раз об увеличении мощности КРЕН8А
Импульсный блок питания для усилителя
Преобразователь напряжения 12-220V
Преобразователь 12V-220V на трансформаторе от компьютерного блока питания
Импульсные преобразователи напряжения
Электронный предохранитель
Устройство защиты радиоаппаратуры от повышенного и пониженного напряжения
Самодельный бесперебойник
Компьютерный блок питания в радиолюбительских конструкциях
Регуляторы напряжения с компаратором
Регуляторы постоянного напряжения на таймере 555
Регуляторы постоянного напряжения на ждущих мультивибраторах и и счетчиках
ШИМ-регулятор на простой логике
ШИМ-регулятор на операционном усилителе
Блок питания для цифровых и аналоговых микросхем
Преобразователь для питания варикапа
Стабилизатор с защитой от КЗ
Дополнительная цепь к регулируемому стабилизатору с цель защиты
Стабилизатор с установкой порогового тока для защиты
Электронно-механическое устройство защиты от перегрузки
Защита от перегрузки по току с использованием динисторного оптрона
Светодиодные индикаторы перегрузки по току
Электронный предохранитель до 10 Ампер
Схемы защиты устройств от всплесков тока и напряжения
Устройство защиты галогенных ламп
Аварийная защита низковольтной аппаратуры
Ограничитель пускового тока
Преобразователь напряжения 12В-220В для электробритвы
Звуковой сигнализатор перегрузки блока питания
Самовосстанавливающийся предохранитель на 12 Вольт
Регулируемый электронный предохранитель
Защита блока питания от КЗ
Стабилизатор напряжения К142ЕН2 и его применение
Мощный стабилизированный инвертор 24- 220 Вольт
Высоковольтный преобразователь напряжения
Преобразователи напряжения из 4,5В в двуполярное 15В
Преобразователь сетевого напряжения в трехфазное
Мощный двухполярный источник питания для лабораторных целей
Источник питания с регулировкой полярности
Зарядное устройство с цифровыми микросхемами
Не сложный импульсный стабилизатор
Транзисторный стабилизатор 9V с системой защиты
Стабилизатор переменного напряжения
Сигнализаторы разряда элементов питания
Стабилизатор напряжения на микросхеме К142ЕН2
Стабилизатор сетевого напряжения
Стабилизатор тока до 150 А
Стабилизированный источник питания с защитой от перегрузки
Преобразователь 1,5V в 9V
Ступенчатое включение мощной нагрузки
Тиристорный преобразователь 12V в 220V
Двуполярное напряжение от батарейки «Крона»
Уменьшение пульсаций выходного напряжения
Универсальное зарядное устройство
Универсальный блок питания на микросхеме КР142ЕН12
Устройство аварийного электропитания
Регулируемый стабилизатор тока
Регулируемое двуполярное из однополярного
Регулятор мощности не создающий помех
Регулятор сетевого напряжения
Тиристорный регулятор тока
Регулятор мощности для активной нагрузки
Преобразователь напряжения 12/220В-50Гц
Импульсный источник питания 30 вольт, 200 Вт
Преобразователь напряжения с 4,5 на 15 В
Преобразователь напряжения 12V-30V
Автоматическое отключение аккумуляторной батареи
Бесперебойное питание для цифровых микросхем
Стабилизированный блок питания 1-40V с защитой от перегрузки
Лабораторный блок питания 0-20V
Трехфазный инвертор для электродвигателей
Импульсный блок питания для мощного УМЗЧ
Резервный преобразователь напряжения
Электронный предохранитель для устройств с питанием до 25 Вольт
Электронный предохранитель 12V/1A
Преобразователь 50Гц\ 60Гц
Усовершенствованный лабораторный блок питания
Высоковольтный преобразователь
Устройство защиты источника питания от перегрузки
Симисторный регулятор повышенной мощности
Устройство для зарядки малогабаритных аккумуляторов
Мягкое включение УНЧ
Таймер для зарядки аккумулятора
Импульсный стабилизатор напряжения с высоким КПД
Универсальный эквивалент нагрузки для ремонта и настройки источников питания
Преобразователь напряжения для цифровых микросхем
Регулируемый стабилизатор напряжения и тока
Стабилизированный регулятор мощности для изменяющейся нагрузки
Блок бесперебойного питания
Импульсный понижающий стабилизатор 24V-12V
Лабораторный блок питания 5…100 Вольт
Звуковой сигнализатор разряда аккумулятора
Стабилизатор тока до 150 Ампер
Ограничение зарядного тока конденсаторов
Ni-Cd аккумуляторы и их эксплуатация
Импульсный сетевой источник 5 В с высокими параметрами
Зарядное устройство для Ni-Cd аккумуляторов
Преобразователь 12- 220V и зарядное устройство
Двуполярный источник питания на основе «электронного трансформатора»
Малогабаритный мощный стабилизатор 12V
Блок питания отключающийся без нагрузки
Преобразователь 12V- 24V на ячейке логической микросхемы
Двуполярное стабилизированное напряжение 5V из однополярного 12V
Преобразователь напряжения 12V\ 220V 50Гц
Регулируемый двуполярный блок питания с искусственной «средней точкой»
Стабилизированный блок питания 3V для аудиоплеера
Маломощный импульсный двуполярный
Агрегаты тиристорные серий ТЕ, ТП, ТПР, ТЕР схемы и документация
Источник опорного напряжения ИОНА
Мощный лабораторный источник с защитой и регулировкой
Вариант мощного двуполярного стабилизатора напряжения
Лабораторный источник питания с защитой и индикацией перегрузки
Преобразователь 12-220 вольт на NE555

radio-uchebnik.ru

В помощь радиолюбителям — Блоки и источники питания

Добро пожаловать в эту часть сайта здесь будут выставлены схемы блока питания,

Вот самый популярный:

Простой регулируемый блок питания радиолюбительских устройств на двух транзисторах.Одним из основных приборов мастерской радиолюбителя является лабораторный блок питания. Собирая какую-либо схему, радиолюбителю для ее отладки, проверки необходим источник питания. В этой статье, на сайте Радиолюбитель, мы рассмотрим следующую радиолюбительскую схему: простой в сборке, не имеющий дефицитных деталей источник питания для радиолюбительских устройств.

Данный блок питания, в зависимости от примененных деталей, позволяет получить на выходе регулируемое напряжение 0-12V, при силе тока до 1,5 А.

Рассмотрим электрическую схему.

Трансформатор Tr1 понижает сетевое напряжение 220V до напряжения 15-18V которое поступает на выпрямитель VDS1 собранный по мостовой схеме из четырех диодов.Конденсатор С1 сглаживает пульсации выпрямленного напряжения. Далее напряжение поступает на стабилизатор напряжения выполненный на стабилитроне VD1 и составном эмиттерном повторители на транзисторах VT1 и VT2. С помощью переменного резистора R6 регулируется напряжение на выходе блока питания.

Применяемые детали:

Трансформатор – любой, со вторичной обмоткой рассчитанной на выходное напряжение 15-18 вольт и силу тока  -2 – 3 ампера (т.е. мощность трансформатора должна быть около 40 ватт). Можно использовать трансформатор от старых советских телевизоров ТВК-110Л, но при этом ток нагрузки должен быть менее 1 ампера.

Стабилитрон — Д814Г. В принципе можно использовать любой стабилитрон из этой серии, что может повлиять только на максимальное выходное напряжение. Ниже приводится таблица с характеристиками стабилитронов серии Д814:

Внешний вид стабилитрона:Транзистор VT1 – любой из серии КТ315 (А-Е).

Ниже приводятся характеристики транзисторов этой серии:

Внешний вид транзистора:

Транзистор VT2 – КТ815. Для получения большего выходного тока можно применить транзисторы из  серии КТ817. Транзистор обязательно должен располагаться на радиаторе не менее 10-15 кв.см. Ниже приведены характеристики транзисторов:

Внешний вид тразистора: 

Диодный мост собран на диодах Д226:

Внешний вид диода:

Если в схеме будет использован более мощный транзистор VT2, то диоды можно заменить на КД202: 

Внешний вид диода: 

Конденсатор С1 – электролитический емкостью не менее 2200 микрофарад и рабочее напряжение не менее 25 вольт. Можно использовать конденсаторы меньшей емкостью соединив их параллельно.Данная схема не нуждается в налаживании, но надо иметь ввиду, что в схеме нет защиты от перегрузки и чтобы не спалить детали не подключайте к блоку питания схемы с током нагрузки более 1,5 ампера. Монтаж схемы можно выполнить навесным способом.

radiolove.ucoz.ru

Источники питания, стабилизаторы, преобразователи напряжения, схемы, Любительская радоэлектроника

 

Источники  питания, стабилизаторы  и преобразователи  напряжения.

 

  Простейшие схемы источников питания  — стабилизаторы напряжения, источники стабильного тока, зарядные устройства и другие схемы.

   Импульсный источник питания мощностью  до 20 Вт. источник питания выполнен по схеме однотактного импульсного высокочастотного преобразователя и имеет меньшие габариты, чем  аналогичные, работающие  с понижающим трансформатором, на частоте 50 Гц.

   Импульсный источник питания мощностью до 40 Вт представляет собой однотактный импульсный преобразователь напряжения, работающий на частоте, примерно, 50 кГц.

   Импульсный преобразователь напряжения  c  12 В  на  220 В  —  позволяет подключать нагрузку мощностью до 100 Вт, рабочая частота преобразования около 20 кГц.

   Импульсный  источник  питания  мощностью до 60 Вт. диапазон входных напряжений  180-230 В, рабочая частота преобразователя около 20 кГц.

   Простой лабораторный источник питания применено двухступенчатое преобразование выпрямленного напряжения: ШИМ преобразование в промежуточное напряжение и последующая линейная стабилизация. 

   Преобразователь постоянного напряжения КР1446ПН1Е Микросхема КР1446ПН1Е представляет собой импульсный повышающий регулятор напряжения для питания низковольтных нагрузок.

   Блок питания для переносной телерадиоаппаратуры источник питания выполнен по схеме двухтактного импульсного высокочастотного преобразователя, выходная мощность 20 Вт,  КПД при номинальной мощности  не менее 85%, частота преобразования  68 кГц. 

   Питание радиоаппаратуры от бортовой сети автомобиля. Подключать радиоаппаратуру непосредственно к аккумулятору нежелательно, так как его напряжение может меняться от 10 до 15 В, а переносная аппаратура питается меньшим напряжением.

  Блок питания на 4В с автоматическим зарядным устройством  —  предназначен для питания от сети 220 В напряжением 4 В маломощной нагрузки (током не более 100 мА) и заряда трех аккумуляторов типа НКГЦ-0,45 или НКГЦ-0,5 с автоматическим выключением режима заряда.

   Современные методы повышения качества источников питания. Если не принять специальных мер, форма тока, потребляемого импульсным источником питания (импульсным преобразователем) от сети , будет далека от синусоидальной и представляет собой последовательность коротких импульсов с частотой повторения 100 Гц значительной амплитуды, в 5…10 раз превышающей его среднее значение.

  Импульсные блоки питания телевизоров и их ремонт. Справочное пособие  (djvu)

   Программа для расчета  импульсного источника питания.  Программа “Converter” позволяет рассчитать двухтактный полумостовой преобразователь импульсного источника питания с самовозбуждением. 

   Расчет трансформатора двухтактного импульсного источника питания. Справочное пособие  (pdf)

   Программа для расчета трансформатора  «Transformer 3.0.0.3» —  предназначена для расчёта импульсных трансформаторов двухтактных импульсных источников питания с задающим генератором.  Скачать   

   Миниатюрный блок питания 5-12 В. Блок питания предназначен для питания от сети малогабаритных радиоэлектронных устройств.

  Звуковой сигнализатор перегрузки блока питания  Звуковая сигнализация позволяет пользователю быстро среагировать на аварийную ситуацию, если при экспериментах с различной аппаратурой возникла перегрузка источника питания.

   Блок питания с гасящим конденсатором Использование конденсаторов для подачи пониженного напряжения в нагрузку от осветительной сети, имеет давнюю историю. Это позволяло устранить гасящий резистор, являющийся источником тепла и нагрева всей конструкции.

  Регулируемый двухполярный источник питания  В лаборатории радиолюбителя, как правило, есть регулируемый стабилизированный блок питания. Добавив к нему несложную приставку, можно получить двух-полярный источник питания.

   Мощные блоки питания.  Стабилизатор напряжения  разрабатывался для питания мощного усилителя НЧ. Он имеет выходное напряжение 27 В, ток нагрузки до 3 А. Блок питания двухполярный, выполнен на комплементарных транзисторах КТ825 и КТ827

   Плавный пуск  блоков питания.  При включени блока питания   в сети возникает помеха, вызванная пусковыми токами трансформаторов, токами заряда конденсаторов и стартом  питаемых устройств.  Для таких блоков питания и предлагается это устройство плавного пуска

  Ремонт блока питания.  Ремонт блоков питания от роутеров и другой техники Asus и D-Link за 10 минут

  Экономичный стабилизатор с малым падением напряжения.   Несложный стабилизатор компенсационного типа для слаботочных узлов, собранный на дискретных элементах.  Его собственный ток потребления составляет приблизительно 1 мА

  Преобразователь напряжения 3-12 вольт. Ремонт усилителя воспроизведена плейера иностранного производства часто бывает затруднителен из-за использования в нем низковольтной микросхемы, аналог которой найти очень трудно Поэтому приходится делать новую конструкцию на транзисторах или микросхемах отечественного производства.

 

  Радиоэлектроника — Автоэлектроника, зарядные устройства, аккумуляторы, системы зажигания, охранные устройства, схемы.

 

 

 

vicgain.sdot.ru

БЛОК ПИТАНИЯ НАЧИНАЮЩЕГО РАДИОЛЮБИТЕЛЯ

   Если вы делаете первые шаги в таком увлекательном хобби, как радиолюбительство, то без регулируемого БП не обойтись никак. При сборке и отладке какого-либо устройства, собираемого радиолюбителем, всегда возникает вопрос от чего его запитать. Здесь выбор небольшой, либо блок питания, либо элементы питания (батарейки). В свое время для этих целей мной был приобретен китайский адаптер с переключателем напряжения на выходе от 1,5 до 12 вольт, но и он оказался не совсем удобен в радиолюбительской практике. Стал искать схему устройства, в котором можно было бы плавно регулировать напряжение на выходе, и на одном из сайтов нашел следующую схему БП:


Регулируемый блок питания — электрическая схема

   Номиналы деталей в схеме:

 Т1 Трансформатор с напряжением на вторичной обмотке 12-14 вольт.
 VD1 КЦ405Б
 С1 2000 мкФх25 вольт
 R1 470 Ом
 R2 10 кОм
 R3 1 кОм
 D1 Д814Д
 VT1 КТ315
 VT2 КТ817

   В своем блоке питания взял некоторые другие детали, а конкретно — заменил транзистор кт817 на кт805, просто потому что он у меня уже был и к тому же шел сразу с радиатором. У него можно было удобно подпаяться к выводам с тем, чтобы подключить его впоследствии к плате навесным монтажем. Если есть потребность собрать такой блок питания на большую мощность, нужно взять трансформатор также на 12-14 вольт и соответственно диодный мост тоже на большую мощность. В этом случае потребуется увеличить и площадь радиатора. Я взял, как и было указано на схеме, КЦ405Б. Если требуется, чтобы напряжение регулировалось не от 11,5 вольт до нуля, а выше, нужно подобрать стабилитрон на нужное напряжение и транзисторы с более высоким рабочим напряжением. Трансформатор, разумеется, также должен выдавать на вторичной обмотке более высокое напряжение хотя бы на 3-5 вольт. Подбирать детали придется экспериментально. Мною была разведена печатная плата для этого блока питания:

   В этом устройстве регулировка напряжения на выходе осуществляется вращением ручки переменного резистора. Сам реостат не стал впаивать в плату, а прикрепил к верхней крышке устройства и подключил к плате навесным монтажем. На плате подключаемые выводы переменного резистора обозначены как R2.1, R2.2, R2.3. Если напряжение регулируется при вращении ручки не слева (минимум) направо (максимум), нужно поменять местами крайние выводы переменного резистора. На плате + и – обозначены плюс и минус выхода. Для точности измерения тестером при установке нужного напряжения нужно добавить резистор на 1 кОм между плюсом и минусом выхода. На схеме он не указан, на моей печатной плате предусмотрен. Для тех, у кого остались запасы старых транзисторов, могу предложить такой вариант регулируемого блока питания:


Регулируемый блок питания на старых деталях — схема

   В моем блоке питания установлены предохранитель, клавишный выключатель, и индикация включения на неоновой лампе, подключено все это навесным монтажем. Для подачи питания к собираемому устройству удобно пользоваться зажимами «крокодил” с изоляцией. Они подключаются к блоку питания с помощью лабораторных зажимов, в которые также сверху можно воткнуть щупы от тестера. Это удобно когда нужно кратковременно подать питание в схему, а «крокодилами” подключиться некуда, например, при ремонте, коснувшись контактов на плате кончиками щупов. Фото готового устройства на рисунке ниже:

   Этот блок питания работает у меня уже несколько лет, проблем в работе выявлено не было. Печатная плата для программы sprint layout прикреплена в файле. Автор статьи: AKV.

   Форум по РБП

   Обсудить статью БЛОК ПИТАНИЯ НАЧИНАЮЩЕГО РАДИОЛЮБИТЕЛЯ

radioskot.ru