На tl431 схемы – Описание регулируемого стабилитрона TL431. Схемы включения, цоколевка, аналоги, datasheet

Содержание

Стабилитрон TL431: схема включения

TL431- это интегральный стабилитрон. В цепи он играет роль источника опорного напряжения. Используется представленный элемент, как правило, в блоках питания. Устройство у стабилитрона довольно простое. Всего у модели используется три выхода. В зависимости от модификации в корпусе могут располагаться до десяти транзисторов. Отличительной чертой TL431 считается хорошая термостабильность.

Схема включения на 2.48 В

У стабилитрона TL431 схема включения на 2.48 В имеет одноступенчатый преобразователь. В среднем рабочий ток в системе достигает уровня 5.3 А. Резисторы для передачи сигнала могут использоваться с различной проводимостью напряжения. Точность стабилизаций в указанных устройствах колеблется в районе 2 %.

Для повышения чувствительности стабилитрона используются различные модуляторы. Как правило, подбираются именно дипольного типа. В среднем емкость их не более 3 пФ. Однако в данном случае многое зависит от проводимости тока. Чтобы снизить риск перегрева элементов, используются расширители. Подключение стабилитронов осуществляется через катод.

Включение устройства на 3.3 В

У стабилитрона TL431 схема включения на 3.3В подразумевает использование одноступенчатого преобразователя. Резисторы для передачи импульса применяются селективного типа. Еще у стабилитрона TL431 схема включения 3.3 вольта имеет модулятор небольшой емкости. Чтобы снизить риск коротких замыканий, применяют предохранители. Устанавливаются они, как правило, за стабилитронами.

Для усиления сигнала не обойтись без фильтров. В среднем пороговое напряжение колеблется в районе 5 Вт. Рабочий ток системы составляет не более 3.5 А. Как правило, точность стабилизации не превышает 3%. Также важно отметить, что подключение стабилитрона может осуществляться через векторный переходник. В этом случае транзистор подбирается резонного типа. В среднем емкость модулятора должна составлять 4.2 пФ. Тиристоры используются как фазового, так и открыто типа. Чтобы увеличить проводимость тока, необходимы триггеры.

На сегодняшний день указанные элементы оснащаются усилителями разной мощности. В среднем пороговое напряжение в системе достигается 3.1 Вт. Показатель рабочего тока колеблется в районе 3.5 А. Также важно учитывать выходное сопротивление. Представленный параметр обязан составлять не более 80 Ом.

Подключение к цепи 14 В

У стабилитрона TL431 схема включения 14V подразумевает использование скалярного преобразователя. В среднем пороговое напряжение равняется 3 Вт. Как правило, рабочий ток не превышает 5 А. При этом допустимая перегрузка колеблется в районе 4 Ач. Также у стабилитрона TL431 схема включения 14V имеет усилители как однополюсного, так и двухполюсного типа. С целью улучшения проводимости не обойтись без тетрода. Использоваться он может с одним или двумя фильтрами.

Стабилитроны серии A

Для блоков питания и инверторов используются серии A TL431. Как проверить правильность подключения элемента? На самом деле это можно сделать при помощи тестера. Показатель порогового сопротивления обязан составлять 80 Ом. Работать устройство способно через преобразователи одноступенчатого и векторного типа. Резисторы в данном случае используются с обкладкой.

Если говорить про параметры, то номинальное напряжение цепи не превышает 5 Вт. В данном случае рабочий ток колеблется в районе 3.4 А. Чтобы снизить риск перегревов транзисторов, применяются расширители. Для моделей серии A они подходят только коммутируемого типа. Чтобы увеличить чувствительность устройства, необходимы мощные модуляторы. В среднем параметр выходного сопротивления не превышает 70 Ом.

Устройства серии CLP

Стабилитронов TL431 схема включения имеет одноступенчатые преобразователи. Встретить модель CLP можно как в инверторах, так и во многих бытовых устройствах. Пороговое напряжение стабилитрона колеблется в районе 3 Вт. Непосредственно рабочий ток составляет 3.5 А. Точность стабилизации у элементов не превышает 2.5%. Для регулировки выходного сигнала используются модуляторы разных типов. Триггеры в данном случае подбираются с усилителями.

Стабилитроны серии ACLP

Стабилитронов TL431 схема включения имеет векторные или скалярные преобразователи. Если рассматривать первый вариант, то уровень рабочего тока составляет не более 4 А. В данном случае точность стабилизации составляет примерно 4%. Для усиления сигнала используются триггеры, а также тиристоры.

Если рассматривать схему подключения со скалярным преобразователем, то модуляторы применяются с емкостью около 6 пФ. Непосредственно транзисторы используются резонансного типа. Для усиления сигнала подойдут обычные триггеры. Также важно отметить, что показатель чувствительности устройства колеблется в районе 20 мВ.

Модели AC

Для дипольных инверторов часто используются чери АС стабилитроны TL431. Как проверить работоспособность подсоединенного элемента? Сделать это можно при помощи обычного тестера. Параметр выходного сопротивления обязан составлять не более 70 Ом. Также важно отметить, что устройства этой серии включаются через векторный преобразователь.

В данном случае скалярные модификации не подходят. Во многом это связано с низким порогом проводимости тока. Также важно отметить, что показатель номинального напряжения не превышает 4 Вт. Рабочий ток в цепи поддерживается на уровне 2 А. Для понижения тепловых потерь используются различные тиристоры. На сегодняшний день выпускаются расширительные и фазовые модификации.

Модели с корпусом КТ-26

В бытовых электроприборах часто встречаются с корпусом КТ-26 стабилитроны TL431. Схема включения подразумевает использование дипольных модуляторов. Производятся они с различной проводимостью тока. Параметр предельной чувствительности системы колеблется в районе 430 мВ.

Непосредственно выходное сопротивление достигает не более 70 Ом. Триггеры в данном случае используются лишь с усилителями. Для уменьшения риска возникновения коротких замыканий применяются фильтры открытого и закрыто типа. Непосредственно подключение стабилитрона осуществляется через катод.

Корпус КТ-47

TL431 (стабилизатор) с корпусом КТ-47 можно встретить в блоках питания различной мощности. Схема включения элемента подразумевает использование векторных преобразователей. Модулятор для цепей подходит емкостью до 4 пФ. Непосредственно выходное сопротивление устройств составляет примерно 70 Ом. Для улучшения проводимости стабилитронов используются тетроды только лучевого типа. Как правило, точность стабилизации не превышает 2%.

Для блоков питания на 5 В

В блоках питания 5 В включение TL431 осуществляется через усилители с различной проводимостью тока. Непосредственно преобразователи используются одноступенчатого типа. Также в некоторых случаях применяются векторные модификации. В среднем выходное сопротивление составляет около 90 Ом. Показатель точности стабилизации в устройствах составляет 2%. Расширители для блоков используются как коммутируемого, так и открыто типа. Триггеры можно использовать только с фильтрами. На сегодняшний день они производятся с одним и несколькими элементами.

Схема включения для блоков на 10 В

Схема включения стабилитрона в блок питания подразумевает использование одноступенчатого либо векторного преобразователя. Если рассматривать первый вариант, то модулятор подбирается с емкостью на уровне 4 пФ. В данном случае триггер используется лишь с усилителями. Иногда для повышения чувствительности стабилитрона применяются фильтры. Пороговое напряжение цепи в среднем составляет 5.5 Вт. Рабочий ток системы колеблется в районе 3.2 А.

Параметр стабилизации, как правило, не превышает 3%. Если рассматривать схему с векторным преобразователем, то тут не обойтись без трансивера. Использоваться он может либо открытого, либо хроматического типа. Модулятор устанавливается с емкостью на уровне 5.2 пФ. Расширитель встречается довольно редко. В некоторых случаях он способен повысить чувствительность стабилитрона. Однако важно учитывать, что тепловые потери элемента значительно возрастают.

Схема для блоков на 15 В

Стабилитрона TL431 схема включения через блок на 15 В осуществляется при помощи одноступенчатого преобразователя. В свою очередь, модулятор подходит с емкостью на уровне 5 пФ. Резисторы применяются исключительно селективного типа. Если рассматривать модификации с триггерами, то параметр порогового напряжения не превышает 3 Вт. Точность стабилизации находится в районе 3%. Фильтры для системы подходят как открытого, так и закрытого типа.

Также важно отметить, что в цепи может устанавливаться расширитель. На сегодняшний день модели выпускаются в основном коммутируемого типа. У модификаций с трансиверами проводимость тока не превышает 4 мк. В данном случае показатель чувствительности стабилитрона колеблется в районе 30 мВ. Выходное сопротивление при этом достигает примерно 80 Ом.

Для автомобильных инверторов

Для автомобильных инверторов часто используются серии АС стабилитроны TL431. Схема включения в данном случае подразумевает использование двухразрядных триодов. Непосредственно фильтры применяются открытого типа. Если рассматривать схемы без расширителя, то пороговое напряжение колеблется в районе 10 Вт.

Непосредственно рабочий ток составляет 4 А. Параметр перегрузки системы допускается в 3 мА. Если рассматривать модификации с расширителями, то в данном случае устанавливаются высокоемкостные модуляторы. Резисторы используются стандартно селективного типа.

В некоторых случаях применяются разной мощности усилители. Параметр порогового напряжения, как правило, не превышает 12 Вт. Выходное сопротивление системы может колебаться от 70 до 80 Ом. Показатель точности стабилизации равняется примерно 2%. Рабочий ток у систем составляет не более 4.5 А. Непосредственно подключение стабилитронов происходит через катод.

fb.ru

Микросхема TL431 (стабилитрон TL-431): параметры и характеристики микросхемы

Есть много известных, знаковых, новаторских и одновременно простых конструкций интегральных схем, которые превзошли ожидания своих создателей, стали популярными и даже как-то повлияли на развитие электроники. Одна из них управляемый стабилитрон tl431. Сделанная в 1978 году микросхема tl431 до сих пор широко применяется во многих профессиональных и любительских проектах.

Внешний вид TL431

Эксплуатационные характеристики tl431

Чтобы составить представление о конструкции tl431, надо изучить datasheet устройства или описание микросхемы на русском языке, которое можно найти в сети.

Часто tl431-ая система представлена в виде компаратора или конкретного транзистора с опорным напряжением 2,5 В и напряжением насыщения около 2 В. Транзистор открывается в момент достижения напряжения между анодной (Anode) и входной (Reference) клеммой 2,5 В, ток начинает протекать от анода к катоду. Если напряжение ниже величины открытия, транзистор запирается. Интерпретация схемы тл в виде такого транзистора облегчает понимание ее работы.

Упрощенное представление tl431

Фактически, это интегральная схема с расширенной внутренней структурой, состоящей из нескольких транзисторов, резисторов и конденсаторов.

В «даташите» представлены различные параметры системы, главными рабочими характеристиками являются:

  1. Максимальное катодное напряжение 36 В;
  2. Источник очень стабилен, имеет температурный дрейф обычно около 3-7 мВ;
  3. Входной ток (Ref) составляет 1-5 мкА;
  4. Минимальное значение катодного тока рекомендуется 1 мА, максимальное 100 мА.

Преимущества tl431:

  • регулируемое напряжение;
  • потребляет мало энергии;
  • защищает аккумулятор от глубокой разрядки;
  • может использоваться, как регулируемый Z-диод и как управляемый усилитель;
  • обладает только тремя контактами;
  • низкая стоимость.

Цоколевка микросхемы зависит от фирмы-изготовителя и может различаться. Если радиолюбители выпаивают tl431 из какой-либо платы, то распиновка будет на ней видна.

Цоколёвка tl431 с несколькими разновидностями исполнения представлена на рисунке.

Разновидности распиновки tl431

Схема включения

Для tl431 схема включения зависит от того, для каких целей предназначается устройство. Простейшее его применение стабилизация напряжения заданной величины.

На вход tl431 подключается делитель напряжения, выполненный с помощью пары резисторов. С учетом технических данных микросхемы можно вычислить требуемые сопротивления.

Допустим, на выходе необходимо получить 5 В. Расчеты ведутся на основании формулы:

Vout = (1 + R1/R2) x Vref.

Полная формула записывается в виде:

Vout = (1 + R1/R2) x Vref + (Iref x R1), но вторую часть уравнения можно игнорировать, так как это очень маленькое значение, хотя все будет зависеть от используемой схемы.

  1. 5 В = (1 + R1/R2) х 2,5;
  2. R1/R2 = 1.

Так как соотношение сопротивлений равно 1, должны использоваться два резистора с одинаковым сопротивлением.

Второй пример для выходного напряжения 2,75 В:

  1. 2,75 В = (1 + R1/R2) х 2,5;
  2. R1/R2 = 0,1.

Например, если один резистор взят сопротивлением 1 кОм, то другой должен быть 10 кОм.

Схема стабилизатора напряжения

В результате опорное напряжение сохраняется на уровне 2,5 В, останавливая свой выбор на различных сопротивлениях делителя, можно создать стабилизатор заданного значения напряжения.

Важно! В случае необходимости стабилизировать напряжение 2,5 В делитель не используется, а входной вывод tl431 соединяется с катодом.

Стабилизатор тока

Микросхема tl431 находит применение и как стабилизатор тока. Здесь для расчета сопротивления при желаемом токе применяется формула:

R2 = Vref/Io, где:

  • R2 – сопротивление,
  • Io – желаемый ток.

Так как напряжение Vref = 2,5 В, то R2 = 2,5/Io. При этом через сопротивление R2 выполняется обратная связь для сохранения уровня входного напряжения Vref.

Стабилизатор тока

Схемы с датчиками

Во многих схемах необходимо контролировать параметры при помощи различных датчиков (фоторезисторов, терморезисторов). Общая схема получается похожей, как для делителя, за исключением замены одного из сопротивлений. На его месте устанавливается, например, терморезистор, а катод tl431 подключается к катушке реле. Значение температуры устанавливается при помощи потенциометра. Когда температура превышает предел срабатывания, соотношение сопротивлений изменяется, напряжение на контакте управления tl431 превышает уровень открывания, ток пропускается на катушку реле, имеющую замыкающие контакты в цепи нагрузки.

Схема с термодатчиком

Зарядное устройство

Для зарядных устройств важно ограничивать параметры тока и напряжения заряда во избежание повреждения аккумуляторов. Такая схема легко может быть реализована с применением интегральной микросхемы tl431 и других элементов:

  1. Если выходное напряжение не достигло показателя 4,2 В, регулирование зарядного тока осуществляется посредством транзисторов и резисторов;
  2. По достижении значения 4,2 В выходное напряжение ЗУ контролируется tl431, не позволяя ему повышаться дальше.

Проверка микросхемы

Радиолюбители задаются вопросом, как проверить tl431 мультиметром? Простая прозвонка микросхемы невозможна, ведь она содержит много элементов. Но есть способ, как проверить работоспособность устройства, собрав специальную схему из резисторов, кнопки и самой ТЛ-схемы. Подключение мультиметра на выход схемы теперь поможет определить исправность tl431.

Схема проверки tl431

Если нажать на кнопку, тестер покажет выходное напряжение 2,5 В, при отпущенной кнопке – 5 В.

При создании устройства предполагалось, что все микросхемы данного типа от разных производителей будут иметь цифровые символы 431, а буквенные могут отличаться, например, az431, другой аналог KIA431. Затем стали менять и цифры. Для tl431 аналог отечественный тоже существует. Это КР142ЕН19.

Видео

Оцените статью:

elquanta.ru

описание и проверка элемента мультиметром

Выпуск интегральной микросхемы начался с далекого 1978 года и продолжается по сегодняшний день. Микросхема дает возможность изготовить различные виды сигнализации и зарядные устройства для повседневного применения. Микросхема tl431 нашла широкое применение в бытовых приборах: мониторах, магнитофонах, планшетах. TL431 — это своего рода программируемый стабилизатор напряжения.

Схема включения и принцип работы

Принцип работы довольно прост. В стабилизаторе есть постоянная величина опорного напряжения, и если подаваемое напряжение меньше этого номинала, то транзистор будет закрыт и не допустит прохождение тока. Это отчетливо можно наблюдать на следующей схеме.

Если же эту величину превысить, регулируемый стабилитрон откроет P-N переход транзистора, и ток потечет дальше к диоду, от плюса к минусу. Выходное напряжение будет постоянным. Соответственно, если ток упадет ниже величины опорного напряжения, управляемый операционный усилитель закроется.

Цоколевка и технические параметры

Операционный усилитель выпускается в разных корпусах. Изначально это был корпус ТО-92, но со временем его сменил более новый вариант SOT-23. Ниже изображена распиновка и виды корпусов начиная с самого «древнего» и заканчивая обновлённой версией.

На рисунке можно наблюдать, что у tl431 цоколевка изменяется в зависимости от типа корпуса. У tl431 имеются отечественные аналоги КР142ЕН19А, КР142ЕН19А. Существуют и зарубежные аналоги tl431: KA431AZ, KIA431, LM431BCM, AS431, 3s1265r, которые ничем не уступают отечественному варианту.

Характеристика TL431

Этот операционный усилитель работает с напряжением от 2,5 до 36В. Ток работы усилителя колеблется от 1А до 100 мА, но есть один важный нюанс: если требуется стабильность в работе стабилизатора, то сила тока не должна опускаться ниже 5 мА на входе. У тл431 имеется величина опорного напряжения, которая определяется по 6-й букве в маркировке:

  • Если буквы нет, то точность равняется — 2%.
  • Буква А в маркировке свидетельствует о — 1% точности.
  • Буква В говорит о — 0,5% точности.

Более развернутая техническая характеристика изображена на рис.4

В описании tl431A можно увидеть, что величина тока довольна мала и составляет заявленные 100мА, а величина мощности, которую рассеивают эти корпуса, не превышает сотен милливатт. Этого мало. Если предстоит работать с более серьезными токами, то будет правильнее воспользоваться мощными транзисторами с улучшенными параметрами.

Проверка стабилизатора

Сразу возникает уместный вопрос о том, как проверить tl431 мультиметром. Как показывает практика, одним мультиметром проверить не получится. Для проверки tl431 мультиметром следует собрать схему. Для этого понадобятся: три резистора (один из них подстроечный), светодиод или лампочка, источник постоянного тока 5В.

Резистор R3 необходимо подобрать таким образом, чтобы он ограничил ток до 20мА в цепи питания. Его номинал составляет примерно 100Ом. Резисторы R2 и R3 выполняют роль балансира. Как только напряжение будет 2,5 В на управляющем электроде, то переход светодиода откроется, и напряжение пойдет через него. Эта схема хороша тем, что светодиод выполняет роль индикатора.

Источник постоянного тока — 5В является фиксированным, а управлять микросхемой tl431 можно с помощью переменного резистора R2. Когда питание на микросхему не подается, то диод не горит. После того как сопротивление изменяется при помощи подстроечного резистора, светодиод загорается. После этого мультиметр нужно включить в режим измерения постоянного тока и замерить напряжение на управляющем выводе, которое должно составлять 2,5. Если напряжение присутствует и светодиод горит, то элемент можно считать рабочим.

Стабилизатор тока на tl431

На базе операционного усилителя тока tl431 можно создать простой стабилизатор. Для создания нужной величины U этого понадобятся три резистора. Необходимо высчитать номинал запрограммированного напряжения стабилизатора. Расчет можно произвести при помощи формулы: Uвых=Vref( 1 + R1/R2 ). Согласно формуле U на выходе зависит от величины R1 и R2. Чем больше сопротивление R1 и R2, тем ниже напряжение выходного каскада. Получив номинал R2, величину R1 можно высчитать следующим образом: R1=R2( Uвых/Vref – 1 ). Регулируемый стабилизатор возможно включить тремя способами.

Необходимо учесть немаловажный нюанс: сопротивление R3 можно рассчитать по той формуле, по которой рассчитывался номинал R2 и R2. В выходной каскад не стоит устанавливать полярный или неполярный электролит, во избежание помех на выходе.

ЗУ для мобильного телефона

Стабилизатор можно применить как своеобразный ограничитель тока. Это свойство будет полезным в устройствах для зарядки мобильного телефона.

Если напряжение в выходном каскаде не достигнет 4,2 В, происходит ограничение тока в цепях питания. После достижения заявленных 4,2 В стабилизатор уменьшает величину напряжения — следовательно, падает и величина тока. За ограничение величины тока в схеме отвечают элементы схемы VT1 VT2 и R1-R3. Сопротивление R1 шунтирует VT1. После превышения показателя в 0,6 В элемент VT1 открывается и постепенно ограничивает подачу напряжения на биполярный транзистор VT2.

На базе транзистора VT3 резко уменьшается величина тока. Происходит постепенное закрытие переходов. Напряжение падает, что приводит к падению силы тока. Как только U подходит к отметке 4,2 В, стабилизатор tl431 начинает уменьшать его величину в выходных каскадах устройства, и заряд прекращается. Для изготовления устройства необходимо использовать следующий набор элементов:

  • DA1 – TL431K — если нет в наличии этого элемента, то его можно заменить на tl4311, tl783ckc ;
  • R1 – 2,2 Ом;
  • R2 – 470 Ом;
  • R3 – 100 кОм;
  • R4 – 15 кОм;
  • R5 – 22 кОм;
  • R6 – 680 Ом;
  • VT1, VT2 – BC857B;
  • VT3 – az431 или az339p ;
  • VT4 – BSS138.

Необходимо обратить особое внимание на транзистор az431. Для равномерного уменьшения напряжения в выходных каскадах желательно поставить транзистор именно az431, datasheet биполярного транзистора можно наблюдать в таблице.

Именно этот транзистор плавно уменьшает напряжение и силу тока. Вольт-амперные характеристики этого элемента хорошо подходят для решения поставленной задачи.

Операционный усилитель TL431 является многофункциональным элементом и дает возможность конструировать различные устройства: зарядные для мобильных телефонов, системы сигнализации и многое другое. Как показывает практика, операционный усилитель обладает хорошими характеристиками и не уступает зарубежным аналогам.

Оцените статью:

Поделитесь с друзьями!

elektro.guru

tl431, tl432 — Регулируемые источники опорного напряжения — DataSheet

Свойства

  • Регулируемое выходное напряжение: от 2.5 В до 36 В
  • Нагрузочный ток: от 1 мА до 100 мА
  • Полное выходное сопротивление: 0.22 Ом
  • Отклонение точности установленного выходного напряжения 1% или 2 %
  • Температурный диапазон: от  — 40 °C до +125 °C

Применение

  • Источники питания
  • Промышленность
  • Автомобили

 

Купить TL431

 

Описание

TL431 и TL432 — регулируемые стабилитроны с гарантированной стабильностью в рабочем диапазоне температур.  Температурный диапазон расширен для автомобильной версии (от  — 40 °C до +125 °C).  Выходное напряжение может быть установлено в диапазоне от 2.5 В до 36 В с помощью двух внешних резисторов. TL431 и TL432 могут работать в широком диапазоне токов от 1 мА до 100 мА c полным динамическим сопротивлением 0.22 Ом. Отечественным налогом является микросхема 142ЕН19.

Типы корпусов

1 Схематическое представление

 

Расположение выводов для корпуса TO-92 (вид сверху)Рис. 2 Расположение выводов для корпуса SO8 (вид сверху)

 

Рис. 3 Расположение выводов для корпусов SOT23-5 и SOT23-3 (вид сверху)

Рис. 4 Расположение выводов для корпуса SOT323-6 (вид сверху)

 

Рис. 5 Блок-схема TL431 и TL432

 

 

2 Абсолютные максимальные значения и условия эксплуатации

 

Абсолютные максимальные значения
ОбозначениеПараметрЗначениеЕд. изм.
VKAНапряжение между катодом и анодом37В
IkДиапазон катодного токаот -100 до +150мА
RthjaТепловое сопротивление между кристаллом и окружающей средой
TO-92200°C/Вт
SO-885°C/Вт
SOT23-3L248 °C/Вт
SOT23-5L 157 °C/Вт
SOT323-6L 221°C/Вт
 RthjсТепловое сопротивление между кристаллом и корпусом
SO-830°C/Вт
SOT23-3L136°C/Вт
SOT23-5L67°C/Вт
SOT323-6L110°C/Вт
TstgТемпература храненияот -65 до +150°C
TJТемпература p-n перехода150°C
ESDTL431IY, TL431AIY-T: HBM (модель человеческого тела)3000В
TL431-TL432: HBM (модель человеческого тела) 2000
MM: модель машины200
CDM: Модель заряженного устройства 1500
  1. Короткое замыкание может привести к перегреву. Все значения являются типовыми.
  2. Модель человеческого тела представляет собой конденсатор 100 пФ, заряженный до указанного напряжения, который разряжается между двумя выводами устройства, через резистор 1,5 кОм. Это проделывается для всех комбинаций пар связанных выводов.
  3. Модель машины: конденсатор 200 пФ , заряженный до указанного напряжения, который разряжается между двумя выводами устройства без внешнего резистора (внутреннее сопротивление < 5 Ом). Это проделывается для всех комбинаций пар связанных выводов.
  4. Модель заряженного устройства: все выводы и корпус заряжаются вместе до указанного значения напряжения, а затем разряжаются непосредственно на землю только через один вывод.

 

Рабочие значения
ОбозначениеПараметрЗначениеЕд. изм.
VKAНапряжение между катодом и анодомот Vref  до 36В
IkКатодный токот 1 до 100мА
ToperДиапазон рабочих температур на открытом воздухе
TL431C/ACот 0 до +70°C
TL431I/AI — TL432I/AIот -40 до +105
TL431IY/AIYот -40 до +125

3 Электрические характеристики

 

TL431C (Tamb = 25° C, если не указано иное) 
ОбозначениеПараметрTL431CTL431ACЕд. изм.
Мин.Тип.Макс.Мин.Тип.Макс.
VrefВходное опорное напряжениеВ
VKA = Vref, Ik = 10 мА, Tamb = 25° C2.442.4952.552.472.4952.52
Tmin ≤ Tamb ≤ Tmax2.4232.5672.4532.537
 ΔVrefОтклонение входного опорного напряжения в зависимости от температурымВ
VKA = Vref, Ik = 10 мА, Tmin ≤ Tamb ≤ Tmax317315
Vref/VkaОтношение изменения входного опорного напряжения к изменению напряжения между анодом и катодом (1)
Ik = 10 мА , ΔVKA = от 10 В до Vref-2.7-1.4 -2.7-1.4мВ/В
ΔVKA = от 36 В до 10 В -2-1-2-1
 IrefВходной опорный ток  Ik = 10 мА, R1 = 10 кОм, R2 = ∞мкА
Tamb = 25° C1.841.84
Tmin ≤ Tamb ≤ Tmax5.25.2
ΔIrefОтклонение входного опорного тока в зависимости от температурымкА
Ik = 10 мА, R1 = 10 кОм, R2 = ∞
Tmin ≤ Tamb ≤ Tmax0.41.20.41.2
IminМинимальный катодный ток для управления VKA = Vref 0.510.50.6мА
 IoffКатодный ток в закрытом состоянии 2.6 1000 2.6 1000 нА
|ZKA|Полное динамическое сопротивление (2) VKA = Vref, ΔIk = от 1 до 100 мА f ≤ 1 кГц 0.22 0.5 0.220.5Ом
  1. См. пункт 3.1
  2. Полное динамическое сопротивление рассчитывается по формуле: |ZKA| =ΔVKA/ΔIk

 

TL431I/TL432I (Tamb = 25° C, если не указано иное) 
ОбозначениеПараметрTL431I/TL432ITL431AI/TL432AIЕд. изм.
Мин.Тип.Макс.Мин.Тип.Макс.
VrefВходное опорное напряжениеВ
VKA = Vref, Ik = 10 мА, Tamb = 25° C2.442.4952.552.472.4952.52
Tmin ≤ Tamb ≤ Tmax2.412.582.442.55
ΔVrefОтклонение входного опорного напряжения в зависимости от температуры (1)мВ
VKA = Vref, Ik = 10 мА, Tmin ≤ Tamb ≤ Tmax730730
Vref/VkaОтношение изменения входного опорного напряжения к изменению напряжения между анодом и катодом
Ik = 10 мА , ΔVKA = от 10 В до Vref-2.7-1.4 -2.7-1.4мВ/В
ΔVKA = от 36 В до 10 В -2-1-2-1
 IrefВходной опорный ток  Ik = 10 мА, R1 = 10 кОм, R2 = ∞мкА
Tamb = 25° C1.841.84
Tmin ≤ Tamb ≤ Tmax6.56.5
ΔIrefОтклонение входного опорного тока в зависимости от температурымкА
Ik = 10 мА, R1 = 10 кОм, R2 = ∞
Tmin ≤ Tamb ≤ Tmax0.82.50.81.2
IminМинимальный катодный ток для управления VKA = Vref 0.510.50.7мА
 IoffКатодный ток в закрытом состоянии 2.6 1000 2.6 1000 нА
|ZKA|Полное динамическое сопротивление (2) VKA = Vref, ΔIk = от 1 до 100 мА f ≤ 1 кГц 0.22 0.5 0.220.5Ом
  1. См. пункт 3.1
  2. Полное динамическое сопротивление рассчитывается по формуле: |ZKA| =ΔVKA/ΔIk

 

TL431IY (Tamb = 25° C, если не указано иное) 
ОбозначениеПараметрTL431IYTL431AIYЕд. изм.
Мин.Тип.Макс.Мин.Тип.Макс.
VrefВходное опорное напряжениеВ
VKA = Vref, Ik = 10 мА, Tamb = 25° C2.442.4952.552.472.4952.52
Tmin ≤ Tamb ≤ Tmax2.412.582.442.55
ΔVrefОтклонение входного опорного напряжения в зависимости от температуры (1)мВ
VKA = Vref, Ik = 10 мА, Tmin ≤ Tamb ≤ Tmax730730
Vref/VkaОтношение изменения входного опорного напряжения к изменению напряжения между анодом и катодом
Ik = 10 мА , ΔVKA = от 10 В до Vref-2.7-1.4 -2.7-1.4мВ/В
ΔVKA = от 36 В до 10 В -2-1-2-1
 IrefВходной опорный ток  Ik = 10 мА, R1 = 10 кОм, R2 = ∞мкА
Tamb = 25° C1.841.84
Tmin ≤ Tamb ≤ Tmax6.56.5
ΔIrefОтклонение входного опорного тока в зависимости от температурымкА
Ik = 10 мА, R1 = 10 кОм, R2 = ∞
Tmin ≤ Tamb ≤ Tmax0.82.50.81.2
IminМинимальный катодный ток для управления VKA = Vref 0.510.50.6мА
 IoffКатодный ток в закрытом состоянии 2.6 1000 2.6 1000 нА
Tmin ≤ Tamb ≤ Tmax30003000
|ZKA|Полное динамическое сопротивление (2) VKA = Vref, ΔIk = от 1 до 100 мА f ≤ 1 кГц 0.22 0.5 0.220.5Ом
  1. См. пункт 3.1
  2. Полное динамическое сопротивление рассчитывается по формуле: |ZKA| =ΔVKA/ΔIk

 

3.1 Отклонение входного опорного напряжения в диапазоне температур

 

ΔVref определяется как разница между максимальным и минимальным значениями, полученными на всем диапазоне температур.

Рис. 6 Отклонение входного опорного напряжения на всем диапазоне температур

 

Рис. 7 Тестовая цепь для VKA = Vref

 

Рис. 8 Тестовая цепь для режима управления

 

Рис. 9 Тестовая цепь для Ioff

 

Рис. 10 Цепь для проверки запаса по фазе и усиления по напряжению

 

Рис. 11 Цепь для проверки времени срабатывания

Рис. 12 Зависимость опорного напряжения от температуры

Рис. 13 Зависимость опорного напряжения от катодного тока

Рис. 14 Зависимость опорного напряжения от катодного тока в приближенном масштабе

Рис. 15 Опорный ток от температуры

Рис. 16 Катодный ток в закрытом состоянии от температуры

Рис. 17 Зависимость отношения изменения Vref к VKA от температуры

Рис. 18 Статическое полное сопротивление от температуры

Рис. 19 Минимальный рабочий ток от температуры

Рис. 20 Усиление и фаза от температуры

Рис. 21 Стабильность при разных емкостях нагрузки

Рис. 22 Максимальная рассеиваемая мощность

Рис. 23 Импульсная характеристика для Ik = 1 мА

4 Применение

 

Рис. 24 Схема включения для компаратора с опорным напряжением

 

ПараметрыЗначения
Диапазон входного напряженияот 0 В до 5 В
Входное сопротивление10 кОм
Напряжение питания24 В
Катодный  (Ik)5 mA
Уровень выходного напряжения~2 В – VSUP
Логический вход VIH/VILVL

Рис. 25 Схема включения для параллельного стабилизатора

ПараметрыЗначения
Отклонение опорного напряжения1.0 %
Напряжение питания24 В
Катодный ток (Ik)5 мА
Уровень выходного напряжения2.5 В — 36 В
Нагрузочная емкость100 нФ
Резисторы обратной связи (R1 & R2)10 kΩ

 

Рис. 26 Схема мощного стабилизатора напряжения

  1. Сопротивление R должно обеспечивать ток  ≥1 mA для TL431 при минимуме V(BATT).

 

Рис. 27 Схема управления трехвыводного стабилизатора с фиксированным выходом

 

Рис. 28 Схема мощного параллельного стабилизатора

 

Рис. 29 Схема с зашитой от перенапряжений

 

Рис. 30 Высокоточный стабилизатор 5 В, 1.5 А на LM317

 

Рис. 31 Эффективный, высокоточный стабилизатор на 5 В

  1. Резистор Rb должен обеспечивать катодный ток для TL431 ≥1 мА.

Рис 32 ШИМ конвертер с опорным напряжением на TL431

 

Рис. 33 Схема устройства контроля напряжения

  1. R3 и R4 следует подобрать такими, чтобы обеспечить желаемую яркость свечения светодиодов и катодный ток  ≥1 мА при напряжении VI(BATT)

 

Рис. 34 Реле времени

 

Рис. 35 Высокоточный ограничитель тока

 

Рис. 36 Прецизионный источник постоянного тока

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

rudatasheet.ru

Контроль напряжения на TL431 — Конструкции простой сложности — Схемы для начинающих

Контроль напряжения на TL431

Автор: МАСТЕР, http://radio-hobby.org

TL 431 — регулируемый кремниевый стабилитрон с гарантируемой термостабильностью во всем температурном диапазоне. Его выходное напряжение может устанавливаться в любое значение между 2.5V и 36V с использованием двух внешних резисторов (действующие как делитель напряжения). Он обеспечивает остроконечную характеристику включения
Параметры:
Диапазон выходного напряжения от +2.5 В до +36 В
Температурный коэффициент 50 ppm/°C тип
Макс. потеря мощности 770 мВт

TL431 — превосходная альтернатива кремниевым стабилитронам во многих приложениях. В этой статье мы рассмотрим, как TL431 будет использоваться в простом контроле состояния батареи.

Заметьте, что TL431 также часто маркируется как LM431 и может также быть отмечен как программируемый кремниевый стабилитрон.

Использование TL431
TL431 наиболее распространен в корпусе TO-92, с тремя выводами. А так же испольтзуется восьмивыводная в корпусе SO8. Ниже показана маркировка выводов.

Схема контроля напряжения на TL431

Выше показана схема контроля напряжения на TL431. Цель контроля состоит в том, чтобы просто зажечь светодиод при достижении напряжения критического значения. Может быть использовано с зарядным устройством от солнечных батарей для индикации заряда батарей.

Простое уравнение, отображенное выше, поможет подобрать резисторы для желаемого напряжения, при котором зажжется светодиод. Так как опорное напряжение (Vref) установлено в 2.5В в TL431, эти два резистора подобраны, чтобы обеспечить желаемый результат.
Например, если вам необходимо зажечь светодиод при напряжении 7В, R1 можем взять 1,8 кОм и R2 — 1 кОм. Умножение 2.5 на(1 + (1800/1000)) дает 7.0 В. Точно как и требуется.
В идеале резисторы R1 и R2 должны быть более чем 1 кОм, чтобы гарантировать безопасный ток 10mA.
Резистор R4, подключенный параллельно со светодиодом, препятствует слабое свечение светодиода, когда входное напряжение все еще ниже порога включения. Мы использовали резистор 1 кОм в наших экспериментах.
Резистор R3 должен защитить светодиод от чрезмерного тока — мы использовали резистор 500 Ом, но его значение зависит от спецификации используемого светодиода и требуемой яркости.
Испытание.
Ниже приведена фотография контроля напряжения, собранного на макетной плате с помощью LM431. Зажигание светодиода настроено при достижении напряжения 6.25V.

Резистор 1,5 кОм и 1 кОм были использованы в качестве R1 и R2 соответственно, для достижения желаемого предела в 6,25 В.

Точность контроля напряжения зависит от точности используемых резисторов. Точная настройка может быть достигнута с помощью переменного резистора либо R1 или R2

Автор: МАСТЕР, http://radio-hobby.org

cxema.my1.ru

Как проверить источник опорного напряжения TL431

Добрый день, друзья!

Сегодня мы с вами познакомимся с еще одной «железкой», которая используется в компьютерной технике. Она применяется не так часто, как, скажем, транзистор  или диод, но тоже достойна внимания.

Что это такое – источник опорного напряжения TL431?

В блоках питания персональных компьютеров можно встретить микросхему источника опорного напряжения (ИОН) TL431.

Можно рассматривать ее как регулируемый стабилитрон.

Но это именно микросхема, так как в ней помещено более десятка транзисторов, не считая других элементов.

Стабилитрон – это такая штуковина, которая поддерживает (стремится поддержать) постоянное напряжение на нагрузке. «А зачем это нужно?» – спросите вы.

Дело в том, что микросхемы, из которых состоит компьютер – и большие и малые – могут работать лишь в определенном (не очень большом) диапазоне питающих напряжений. При превышении диапазона весьма вероятен выход их из строя.

Поэтому в блоках питания (не только компьютерных) применяются схемы и компоненты для стабилизации напряжения.

При определенном диапазоне напряжений между анодом и катодом (и определенном диапазоне токов катода) микросхема обеспечивает на своем выходе ref опорное напряжение 2,5 В относительно анода.

Используя внешние цепи (резисторы) можно варьировать напряжение между анодом и катодом в достаточно широких пределах – от 2,5 до 36 В.

Таким образом, нам не нужно искать стабилитроны на определенное напряжение! Можно просто изменять номиналы резисторов и получить нужное нам уровень напряжения.

В компьютерных блоках питания существует источник дежурного напряжения + 5VSB.

Если вилка блока питания вставлена в сеть, оно присутствует на одном из контактов основного питающего разъема — даже если компьютер не включен.

При этом часть компонентов материнской платы компьютера находится под этим напряжением.

Именно с помощью него и происходит запуск основной части блока питания – сигналом с материнской платы. В формировании этого напряжения часто участвует и микросхема TL431.

При выходе ее из строя величина дежурного напряжения может отличаться — и довольно сильно — от номинальной величины.

Чем это может нам грозить?

Если напряжение +5VSB будет больше чем надо, компьютер может «зависать», так как часть микросхем материнской платы питается повышенным напряжением.

Иногда такое поведение компьютера вводит неопытного ремонтника в заблуждение. Ведь он измерил основные питающие напряжения блока питания +3,3 В, +5 В, +12 В – и увидел, что они находятся в пределах допуска.

Он начинает копать в другом месте и тратит массу времени на поиск неисправности. А надо было просто измерить и напряжение дежурного источника!

Напомним, что напряжение +5VSB должно находиться в пределах 5% допуска, т.е. лежать в диапазоне 4,75 – 5,25 В.

Если напряжение дежурного источника будет меньше необходимого, компьютер может вообще не запуститься.

Как проверить TL431?

«Прозвонить» эту микросхему как обычный стабилитрон нельзя.

Чтобы убедиться в ее исправности, нужно собрать небольшую схему для проверки.

При этом выходное напряжение в первом приближении описывается формулой

Vo = (1 + R2/R3) * Vref (см даташит*), где Vref — опорное напряжение, равное 2,5 В.

При замыкании кнопки S1 выходное напряжение будет иметь величину 2,5 В (опорное напряжение), при отпускании ее – величину 5 В.

Таким образом, нажимая и отжимая кнопку S1 и измеряя мультиметром сигнал на выходе схемы, можно убедиться в исправности (или неисправности) микросхемы.

Проверочную схему можно сделать в виде отдельного модуля, используя 16-контактный разъем для DIP-микросхемы с шагом выводов 2,5 мм. Питание и щупы тестера подключаются при этом к выходным клеммам модуля.

Для проверки микросхемы нужно вставить ее в разъем, понажимать кнопку и посмотреть на дисплей тестера.

Если микросхема не вставлена в разъем, выходное напряжение будет равным примерно 10 В.

Вот и все! Просто, не правда ли?

*Даташит – это справочные данные (data sheets) на электронные компоненты. Их можно найти поисковиком в Интернете.

С вами был Виктор Геронда. До встречи на блоге!

vsbot.ru

Что такое TL431 — Теоретические материалы — Теория

Рис. 1 TL431.

            

TL431 была создана в конце 70-х и по настоящее время широко используется в промышленности и в радиолюбительской деятельности.
Но не смотря на её солидный возраст, не все радиолюбители близко знакомы с этим замечательным корпусом и его возможностями.
В предлагаемой статье я постараюсь ознакомить радиолюбителей с этой микросхемой.

Для начала давайте посмотрим, что у неё внутри и обратимся к документации на микросхему («даташит»).
А внутри у неё с десяток транзисторов и всего три вывода, так что же это такое?

Рис. 2 Устройство TL431.

Оказывается всё очень просто. Внутри находится обычный компаратор, и что это такое, мы уже знаем.
Только здесь он играет немного другую роль, а именно — роль стабилитрона. Ещё его называют «Управляемый стабилитрон».
Как он работает?
Смотрим блок-схему TL431 на рисунке 2. Из схемы видно, компаратор имеет (очень стабильный) встроенный источник опорного напряжения 2,5 вольт (маленький квадратик) подключенный к инверсному входу, один прямой вход (R), транзистор на выходе компаратора, коллектор(К) и эмиттер(А) которого объединены с выводами питания компаратора и защитный диод от переполюсовки. Максимальный ток нагрузки этого транзистора до 100 мА, максимальное напряжение до 36 вольт.

Рис. 3 Цоколёвка TL431.

Теперь на примере простой схемы, изображенной на рисунке 4, разберём, как это всё работает.
Мы уже знаем, что внутри микросхемы (компаратора) имеется встроенный источник опорного напряжения 2,5 вольт. У первых выпусков микросхем, которые назывались TL430 — напряжение встроенного источника было 3 вольта, у более поздних выпусков, доходит до 1,5 вольта.
Значит, чтобы сработал компаратор (открылся выходной транзистор), необходимо на его вход (R) подать напряжение чуть превышающее опорное.

Рис. 4 Схема на TL431.

Из схемы видно, что на вход R микросхемы TL431, включен делитель напряжения из резисторов R2 и R3, резистор R1 ограничивает ток светодиода.
Так как резисторы делителя одинаковые, то компаратор сработает при напряжении, чуть превышающем 5 вольт. Это 2,5 вольта — встроенный источник, и 2,5 вольта — напряжение, снимаемое с делителя R2,R3 при напряжении питания 5 вольт.
То есть светодиод у нас загорится (откроется выходной транзистор) при напряжении питания — чуть превышающем 5 вольт.
Если увеличить сопротивление резистора R3, то необходимо будет увеличить напряжение источника питания больше 5 вольт, что бы напряжение на входе R микросхемы достигло 2,5 вольт.
А как же ток питания компаратора? Почему светодиод не горит, когда закрыт транзистор?
Всё очень просто, ток потребления встроенного компаратора — единицы микроампер, его не хватает, чтобы открыть исполнительное устройство и им можно пренебречь.
Получается, что если микросхему использовать как стабилитрон (основное её назначение), то мы можем с помощью подбора сопротивлений делителя сделать стабилитрон с любым напряжением стабилизации в пределах 2,5 — 36 вольт (максимальное ограничение по даташиту) — ответ «ДА».
Тогда возникают ещё вопросы. можно ли например заменить TL431 обычным компаратором?

— Можно, только необходимо будет собрать свой источник опорного напряжения на 2,5 вольт и подать питание на компаратор отдельно от выходного транзистора, так как ток его потребления может открыть исполнительное устройство.
Можно сделать опорное напряжение какое угодно (не обязательно 2,5 вольта), тогда придётся пересчитать сопротивления делителя, используемое совместно с TL431, чтобы при заданном выходном напряжении БП — напряжение подаваемое на вход компаратора было равно опорному.
Ещё один вопрос — а можно использовать TL431, как обычный компаратор и собрать на ней, допустим, терморегулятор, или что то подобное?

— Можно, но так как она отличается от обычного компаратора наличием встроенного источника опорного напряжения, схема получится гораздо проще. Например такая;

Рис. 5 Терморегулятор на TL431.

Здесь терморезистор (термистор) является датчиком температуры, и он уменьшает своё сопротивление при повышении температуры, т.е. имеет отрицательный ТКС (Температурный Коэффициент Сопротивления). Терморезисторы с положительным ТКС, т.е. сопротивление которых при увеличении температуры увеличивается — называются позисторы.
В этом терморегуляторе при превышении температуры выше установленного уровня переменным резистором, сработает реле (или какое либо исполнительное устройство) и контактами отключит нагрузку (тэны), или например включит вентиляторы в зависимости от поставленной задачи.
Эта схема обладает малым гистерезисом, и для его увеличения, необходимо вводить ПОС между выводами 1-3, например переменный резистор 1,0 — 0,5 мОм и величину его подобрать экспериментальным путём в зависимости от необходимого гистерезиса.
Если необходимо, чтобы исполнительное устройство срабатывало при понижении температуры, то датчик и регуляторы нужно поменять местами, то есть термистор включить в верхнее плечо, а переменное сопротивление с резистором — в нижнее.
И в заключении, Вы уже без труда разберётесь, как работает микросхема в схеме мощного блока питания, для питания трансиверов, которая приведена на рисунке 6.

Рис. 6 Мощный блок питания на 13 вольт, 22 ампера.

cxema.my1.ru